El espectro invisible: una fuente de luz en la investigación científica de productos naturales

Diana Angélica Franco-May, María Gabriela Mancilla-Montelongo

Resumen


.

Palabras clave


Productos naturales; Espectro electromagnético; Ultravioleta; Infrarrojo

Texto completo:

PDF

Referencias


Akash MSH y Rehman K. 2020. Essentials of Pharmaceutical Analysis. First edition. Springer Singapore. 222 pp

Aleixandre-Tudo JL y Du Toit W. 2018. The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking. En: Solís-Oviedo RL y Pech-Canul AC (eds.). Frontiers and new trends in the science of fermented food and beverages. IntechOpen. UK. pp. 200-204

de las Heras Polo B. 2021. Productos naturales: De la medicina tradicional a cabezas de serie para el desarrollo de nuevos fármacos del siglo XXI. Anales de la Real Academia de Farmacia 87:97-104

Demain AL. 2014. Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology and Biotechnology 41:185-201

Dias-Souza MV, Perpétuo AA, Dos Santos GS, Machado LFC y Dos Santos RM. 2023. Natural products in drug discovery: meeting the urgency for new antimicrobials for human and veterinary use. AIMS Molecular Science 10:11-21

Fan B, Zhang C, Chi J, Liang Y, Bao X, Cong Y, Yu B Li X y Li GY. 2022. The molecular mechanism of retina light injury focusing on damage from short wavelength light. Oxidative Medicine and Cellular Longevity 2022:8482149

Görög S. 1995. Ultraviolet-visible spectrophotometry in pharmaceutical analysis. First edition. CRC press. USA. 405 pp

Grandi C y D’Ovidio MC. 2020. Balance between health risks and benefits for outdoor workers exposed to solar radiation: an overview on the role of near infrared radiation alone and in combination with other solar spectral bands. International Journal of Environmental Research and Public Health 17:1357

Huck CW. 2015. Advances of infrared spectroscopy in natural product research. Phytochemistry Letters11:384-393

Koutchma T. 2009. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology 2:138-155

Ozaki Y. 2021. Infrared spectroscopy-Mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy. Analytical Sciences 37:1193-1212

Palma E, Tilocca B y Roncada P. 2020. Antimicrobial resistance in veterinary medicine: An overview. International Journal of Molecular Sciences 21:1914

Türker-Kaya S y Huck CW. 2017. A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules 22:168

Verde-Star MJ, García-González S y Rivas-Morales C. 2016. Metodología científica para el estudio de plantas medicinales. En: Rivas-Morales C, Oranday-Cardenas MA y Verde-Star MJ (eds.) Investigación en plantas de importancia médica. OmniaScience. Barcelona. pp. 1-39

Waller SB, Cleff MB, Serra EF, Silva AL, Gomes AdR, de Mello JRB, de Faria RO y Meireles MCA. 2017. Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine. Microbial Pathogenesis 104:232-237




DOI: http://dx.doi.org/10.56369/BAC.5091



Copyright (c) 2023 Diana Angélica Franco May, María Gabriela Mancilla-Montelongo

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

Bioagrociencias, revista electrónica, es una publicación semestral editada por la Universidad Autónoma de Yucatán, a través de la Facultad de Medicina Veterinaria y Zootecnia, km. 15.5 carretera Mérida-Xmatkuil s/n, Mérida, Yucatán, México. Tel. 999 942 32 00. Editor Responsable: Alfonso Aguilar-Perera (alfonso.aguilar@correo.uady.mx), 04-2017-062617313100-203, ISSN 2007-431X.