El espectro invisible: una fuente de luz en la investigación científica de productos naturales

Diana Angélica Franco-May, María Gabriela Mancilla-Montelongo

Resumen


.

Palabras clave


Productos naturales; Espectro electromagnético; Ultravioleta; Infrarrojo

Texto completo:

PDF

Referencias


Akash MSH y Rehman K. 2020. Essentials of Pharmaceutical Analysis. First edition. Springer Singapore. 222 pp

Aleixandre-Tudo JL y Du Toit W. 2018. The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking. En: Solís-Oviedo RL y Pech-Canul AC (eds.). Frontiers and new trends in the science of fermented food and beverages. IntechOpen. UK. pp. 200-204

de las Heras Polo B. 2021. Productos naturales: De la medicina tradicional a cabezas de serie para el desarrollo de nuevos fármacos del siglo XXI. Anales de la Real Academia de Farmacia 87:97-104

Demain AL. 2014. Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology and Biotechnology 41:185-201

Dias-Souza MV, Perpétuo AA, Dos Santos GS, Machado LFC y Dos Santos RM. 2023. Natural products in drug discovery: meeting the urgency for new antimicrobials for human and veterinary use. AIMS Molecular Science 10:11-21

Fan B, Zhang C, Chi J, Liang Y, Bao X, Cong Y, Yu B Li X y Li GY. 2022. The molecular mechanism of retina light injury focusing on damage from short wavelength light. Oxidative Medicine and Cellular Longevity 2022:8482149

Görög S. 1995. Ultraviolet-visible spectrophotometry in pharmaceutical analysis. First edition. CRC press. USA. 405 pp

Grandi C y D’Ovidio MC. 2020. Balance between health risks and benefits for outdoor workers exposed to solar radiation: an overview on the role of near infrared radiation alone and in combination with other solar spectral bands. International Journal of Environmental Research and Public Health 17:1357

Huck CW. 2015. Advances of infrared spectroscopy in natural product research. Phytochemistry Letters11:384-393

Koutchma T. 2009. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology 2:138-155

Ozaki Y. 2021. Infrared spectroscopy-Mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy. Analytical Sciences 37:1193-1212

Palma E, Tilocca B y Roncada P. 2020. Antimicrobial resistance in veterinary medicine: An overview. International Journal of Molecular Sciences 21:1914

Türker-Kaya S y Huck CW. 2017. A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules 22:168

Verde-Star MJ, García-González S y Rivas-Morales C. 2016. Metodología científica para el estudio de plantas medicinales. En: Rivas-Morales C, Oranday-Cardenas MA y Verde-Star MJ (eds.) Investigación en plantas de importancia médica. OmniaScience. Barcelona. pp. 1-39

Waller SB, Cleff MB, Serra EF, Silva AL, Gomes AdR, de Mello JRB, de Faria RO y Meireles MCA. 2017. Plants from Lamiaceae family as source of antifungal molecules in humane and veterinary medicine. Microbial Pathogenesis 104:232-237




DOI: http://dx.doi.org/10.56369/BAC.5091



Copyright (c) 2023 Diana Angélica Franco-May, María Gabriela Mancilla-Montelongo

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Bioagrociencias, revista electrónica, es una publicación semestral editada por la Universidad Autónoma de Yucatán, a través de la Facultad de Medicina Veterinaria y Zootecnia, km. 15.5 carretera Mérida-Xmatkuil s/n, Mérida, Yucatán, México. Tel. 999 942 32 00. Editor Responsable: Alfonso Aguilar-Perera (alfonso.aguilar@correo.uady.mx), 04-2017-062617313100-203, ISSN 2007-431X.