Arbuscular mycorrhizal fungi and biochar on tomatillo growth under greenhouse conditions

Luis López Pérez, Lizbeth Vázquez Lezama, Dario Flores Murillo, Alfredo Reyes Tena

Abstract


Background: Tomatillo (Physalis ixocarpa) production in Mexico requires the search for sustainable fertilization alternatives. In this regard, biochar helps retain water and mineral nutrients, while arbuscular mycorrhizal fungi (AMF) enhance the uptake of these nutrients, making them potentially viable strategies to reduce the use of synthetic fertilizers. Objective: To evaluate the application of biochar and the inoculation of AMF on tomatillo growth. Methodology: A completely randomized experiment was designed, evaluating three percentages of biochar in the substrate (0%, 2.5%, and 5% v/v) and three AMF inocula: two native consortia from agricultural soils in Michoacán ("El Huizachal" and "El Limón"), and one commercial AMF composed of Rhizophagus intraradices and Glomus fasciculatum. Nine treatments were generated with eight replications, for a total of 72 experimental units. The dynamics of plant growth were recorded weekly by measuring plant height, number of leaves, and stem diameter. At 60 days after transplanting, the plants were harvested, and the growth parameters as well as microbiological variables were recorded. Results: A significant effect of the evaluated factors was found (p<0.05); biochar at 2.5% and 5% and the commercial AMF promoted stem diameter, aerial fresh weight, and total fresh weight. In the interaction of factors, the combination of commercial AMF with 5% biochar recorded the highest values for leaf area, root dry weight, and total dry weight. On the other hand, the treatment with 2.5% biochar combined with the “El Limón” consortium significantly increased (p<0.05) stem diameter, root and total fresh weight, number of flowers, and root volume and length. The results showed that biochar negatively affected the formation of mycorrhizal symbiosis by reducing AMF colonization and spore number by 72% and 60%, respectively. Implications: The synergy between AMF and biochar depends on the compatibility of the inoculum used and the dose or source of biochar applied. Conclusions: The promotion of tomatillo plant growth depends on the type of mycorrhizal inoculum species and the concentration of biochar in the substrate. This suggests that the use of biochar and arbuscular mycorrhizal fungi can improve plant performance while contributing to more sustainable agricultural practices.

Keywords


Physalis ixocarpa; Plant-derived biochar; Rhizophagus intraradices; Glomus fasciculatum.

Full Text:

PDF

References


Aguiñaga-Bravo, A., Medina-Dzul, K., Garruña-Hernández, R., Latournerie-Moreno, L. and Ruíz-Sánchez, E., 2020. Efecto de abonos orgánicos sobre el rendimiento, valor nutritivo y capacidad antioxidante de tomate verde (Physalis ixocarpa). Acta Universitaria, 30, p. e2475. https://doi.org/10.15174/au.2020.2475

Anas, M., Khalid, A., Saleem, M.H., Ali-Khan, K., Ahmed-Khattak, W. and Fahad, S., 2025. Symbiotic Synergy: Unveiling Plant-Microbe Interactions in Stress Adaptation. Journal of Crop Health, 77, pp. 1-21. https://doi.org/10.1007/s10343-024-01070-z

Avilés-Avilés, B., 2015. Efecto de vermicompost, compost y fertilizantes sintéticos en el rendimiento y calidad de (Physalis ixocarpa Brot) a campo abierto. Tesis de Licenciatura, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, México. 84 p.

Barna, G., Makó, A., Takács, T., Skic, K., Füzy, A. and Horel, Á., 2020. Biochar alters soil physical characteristics, arbuscular mycorrhizal fungi colonization, and glomalin production. Agronomy, 10, p. 1933. https://doi.org/10.3390/agronomy10121933

Barrer, S.E., 2009. El uso de hongos micorrízicos arbusculares como una alternativa para la agricultura. Biotecnología en el Sector Agropecuario y Agroindustrial, 7, pp. 123-132. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612009000100014&lng=en&tlng=es

Brito, I., Carvalho, M. and Goss, M.J., 2021. Managing the functional diversity of arbuscular mycorrhizal fungi for the sustainable intensification of crop production. Plants, People, Planet, 3, pp. 491-505. https://doi.org/10.1002/ppp3.10212

Campion, L., Bekchanova, M., Malina, R. and Kuppens, T., 2023. The costs and benefits of biochar production and use: A systematic review. Journal of Cleaner Production, 408, p. 137138. https://doi.org/10.1016/j.jclepro.2023.137138

Carballar-Hernández, S., Hernández-Cuevas, L.V., Montaño, N.M., Ferrera-Cerrato, R. and Alarcón, A., 2018. Species composition of native arbuscular mycorrhizal fungal consortia influences growth and nutrition of poblano pepper plants (Capsicum annuum L.). Applied Soil Ecology, 130, pp. 50-58. https://doi.org/10.1016/j.apsoil.2018.05.022

Chen, L., Li, W. and Xiao, Y., 2021. Biochar and nitrogen fertilizer increase Glomus synergism and abundance and promote Trifolium pratense growth while inhibiting pollutant accumulation. Ecological Indicators, 133, p. 108377. https://doi.org/10.1016/j.ecolind.2021.108377

Corradi, N. and Bonfante, P., 2012. The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS pathogens, 8, e1002600. https://doi.org/10.1371/journal.ppat.1002600

Cruz-Koizumi, Y.P., 2015. Análisis comparativo de calidad suelo y productividad en dos sistemas de cultivo de tomate verde (Physalis ixocarpa) en Calakmul, Campeche. Tesis de Maestría, El Colegio de la Frontera Sur, Campeche, México, p. 64.

Cruz-Koizumi, Y.P., Alayón-Gamboa, J.A., Morón-Ríos, A., Castellanos-Albores, J., Aguilar-Chama, A. and Guevara, R., 2018. Effects of organic and chemical agriculture systems on arbuscular mycorrhizal fungi and green tomato production in Calakmul, Mexico. Agricultural Sciences, 9, pp. 1145-1167. http://doi.org/10.4236/as.2018.99080

Cruz-Méndez, A.S., Ortega-Ramirez, E., Lucho-Constantino, C.A., Arce-Cervantes, O., Vázquez-Rodríguez, G.A., Coronel-Olivares, C. and Beltrán-Hernández, R.I., 2021. Bamboo biochar and a nopal-based biofertilizer as improvers of alkaline soils with low buffer capacity. Applied Sciences, 11, p. 6502. https://doi.org/10.3390/app11146502

d’Entremont, T.W. and Kivlin, S.N., 2023. Specificity in plant-mycorrhizal fungal relationships: Prevalence, parameterization, and prospects. Frontiers in Plant Science, 14, p. 1260286. https://doi.org/10.3389/fpls.2023.1260286

Dai, Z., Wang, Y., Muhammad, N., Yu, X., Xiao, K., Meng, J., Liu X., Xu J. and Brookes, P.C., 2014. The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH. Soil Science Society of America Journal, 78, pp. 1606-1614. https://doi.org/10.2136/sssaj2013.08.0340

Dastogeer, K.M., Zahan, M.I., Tahjib-Ul-Arif, M., Akter, M.A. and Okazaki, S., 2020. Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: a meta-analysis. Frontiers in Plant Science, 11, p. 588550. https://doi.org/10.3389/fpls.2020.588550

De Oliveira, M.N., Santo, A., Costa Da, G., Barbosa De, M. and Mota, E., 2018. Biochar Dosage and Granulometry Influencing Soil Density and Water Retention. International Journal of Agriculture Sciences, 10, pp. 0975-3710.

Djotan, A.K.G., Matsushita, N. and Fukuda, K., 2024. Within-site variations in soil physicochemical properties explained the spatiality and cohabitation of arbuscular mycorrhizal fungi in the roots of Cryptomeria Japonica. Microbial Ecology, 87, p. 136. https://doi.org/10.1007/s00248-024-02449-1

Duan, T., Facelli, E., Smith, S. E., Smith, F. A. and Nan, Z., 2011. Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil. Soil Biology and Biochemistry, 43(3), pp. 571-578. https://doi.org/10.1016/j.soilbio.2010.11.024

Escalante-Rebolledo, A., Pérez-López, G., Hidalgo-Moreno, C., López-Collado, J., Campo-Alves, J., Valtierra-Pacheco, E. and Etchevers-Barra, J.D., 2016. Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo. Terra Latinoamericana, 34, pp. 367-382. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792016000300367&lng=es&tlng=es.

Fang, L.L., Liu, Y.J., Wang, Z.H., Lu, X.Y., Li, J.H. and Yang, C.X., 2023. Electrical conductivity and pH are two of the main factors influencing the composition of arbuscular mycorrhizal fungal communities in the vegetation succession series of Songnen Saline-Alkali Grassland. Journal of Fungi, 9, p. 870. https://doi.org/10.3390/jof9090870

Friede, M., Unger, S., Hellmann, C. and Beyschlag, W., 2016. Conditions promoting mycorrhizal parasitism are of minor importance for competitive interactions in two differentially mycotrophic species. Frontiers in Plant Science, 7, p. 1465. https://doi.org/10.3389/fpls.2016.01465

Gallo-Saravia, M., Lugo-Sierra, L. and Zapata, R.B., 2018. Evaluación de biochar como alternativa de sustrato en cultivos de tomate. Scientia et technica, 23, pp. 299-303. https://doi.org/10.22517/23447214.17691

Ganugi, P., Masoni, A., Sbrana, C., Dell’Acqua, M., Pietramellara, G., Benedettelli, S. and Avio, L., 2021. Genetic variability assessment of 127 Triticum turgidum L. accessions for mycorrhizal susceptibility-related traits detection. Scientific reports, 11, p. 13426. https://doi.org/10.1038/s41598-021-92837-1

Gerdemann J. W. and Nicolson, T.H., 1963. Spores of mycorrhizalendogone species extracted from soil by wet-sieving and decanting. Transactions of the British Mycological Society, pp. 235-244.

Grünfeld, L., Mola, M., Wulf, M., Hempel, S. and Veresoglou, S.D., 2021. Disentangling the relative importance of spatio-temporal parameters and host specificity in shaping arbuscular mycorrhizal fungus communities in a temperate forest. Mycorrhiza, 31, pp. 589-598. https://doi.org/10.1007/s00572-021-01041-6

Gu, S., Lian, F., Yang, H., Han, Y., Zhang, W., Yang, F. and Gao, J., 2021. Synergic effect of microorganism and colloidal biochar-based organic fertilizer on the growth and fruit quality of tomato. Coatings, 11, p. 1453. https://doi.org/10.3390/coatings11121453

Guigard, L., Jobert, L., Busset, N., Moulin, L. and Czernic, P., 2023. Symbiotic compatibility between rice cultivars and arbuscular mycorrhizal fungi genotypes affects rice growth and mycorrhiza-induced resistance. Frontiers in Plant Science, 14, p. 1278990. https://doi.org/10.3389/fpls.2023.1278990

Gunes, H., Demir, S., Erdinc, C. and Furan, M. A., 2023. Effects of arbuscular mycorrhizal fungi (AMF) and biochar on the growth of pepper (Capsicum annuum L.) under salt stress. Gesunde Pflanzen, 75, pp. 2669-2681. https://doi.org/10.1007/s10343-023-00897-2

Hossain, M.Z., Bahar, M.M., Sarkar, B., Donne, S.W., Ok, Y.S., Palansooriya, K.N., Kirkham, M.B., Chowdhury S. and Bolan, N., 2020. Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, pp. 379-420. https://doi.org/10.1007/s42773-020-00065-z

Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A.M., Solaiman, Z.M., Alghamdi, S.S., Amara U., Ok Y.S. and Siddique, K.H., 2017. Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 17, pp. 685-716. https://doi.org/10.1007/s11368-016-1360-2

Ippolito, J.A., Spokas, K.A., Novak, J.M., Lentz, R.D. and Cantrell, K.B., 2015. Biochar elemental composition and factors influencing nutrient retention. In: Biochar for environmental management. pp. 139-163. Routledge. https://eprints.nwisrl.ars.usda.gov/id/eprint/1590

Jaafar, N.M., Clode, P.L. and Abbott, L.K., 2015. Soil microbial responses to biochars varying in particle size, surface and pore properties. Pedosphere, 25, pp. 770-780. https://doi.org/10.1016/S1002-0160(15)30058-8

Jamio?kowska, A., Ksi??niak, A., Ga??zka, A., Hetman, B., Kopacki, M. and Skwary?o-Bednarz, B., 2018. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a review. International Agrophysics, 32, pp. 133-140. https://doi.org/10.1515/intag-2016-0090

Khan, S., Irshad, S., Mehmood, K., Hasnain, Z., Nawaz, M., Rais, A., Gul, S., Wahid, M. A., Hashem, A., Abd-Allah, E. F. and Ibrar, D., 2024. Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants, 13(2), p. 166. https://doi.org/10.3390/plants13020166

Köves, M., Madár, V., Ringer, M. and Kocsis, T., 2024. Overview of Traditional and Contemporary Industrial Production Technologies for Biochar along with Quality Standardization Methods. Land, 13, p. 1388. https://doi.org/10.3390/land13091388

Koziol, L. and Bever, J.D., 2016. AMF, phylogeny, and succession: specificity of response to mycorrhizal fungi increases for late?successional plants. Ecosphere, 7, e01555. https://doi.org/10.1002/ecs2.1555

Li, M. and Cai, L., 2021. Biochar and arbuscular mycorrhizal fungi play different roles in enabling maize to uptake phosphorus. Sustainability, 13, p. 3244. https://doi.org/10.3390/su13063244

Li, M., Hou, S., Wang, J., Hu, J. and Lin, X., 2021. Arbuscular mycorrhizal fungus suppresses tomato (Solanum lycopersicum Mill.) Ralstonia wilt via establishing a soil–plant integrated defense system. Journal of Soils and Sediments, 21, pp. 3607-3619. https://doi.org/10.1007/s11368-021-03016-8

Li, T., Yang, H., Zhang, N., Dong, L., Wu, A., Wu, Q., Zhao M., Liu H.,Li Y. and Wang, Y., 2024. Synergistic effects of arbuscular mycorrhizal fungi and biochar are highly beneficial to Ligustrum lucidum seedlings in Cd-contaminated soil. Environmental Science and Pollution Research, 31, pp. 11214-11227. https://doi.org/10.1007/s11356-024-31870-9

Li, Y., Shen, F., Guo, H., Wang, Z., Yang, G., Wang, L., Zhang Y., Zeng Y. and Deng, S., 2015. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage. Environmental Science and Pollution Research, 22, pp. 9534-9543. https://doi.org/10.1007/s11356-015-4115-5

Liang, J.F., An, J., Gao, J. Q., Zhang, X.Y., Song, M.H. and Yu, F.H., 2019. Interactive effects of biochar and AMF on plant growth and greenhouse gas emissions from wetland microcosms. Geoderma, 346, pp. 11-17. https://doi.org/10.1016/j.geoderma.2019.03.033

Liu, J., Zhang, J., Li, D., Xu, C. and Xiang, X., 2020. Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization. MicrobiologyOpen, 9, e00920. https://doi.org/10.1002/mbo3.920

López-Pérez, L., Rubio-Marcos, S., and Reyes-Tena, A. 2024. Consorcios nativos de hongos micorrícicos arbusculares y biochar en la promoción del crecimiento de plantas de girasol. Enfoques Transdisciplinarios: Ciencia y Sociedad, 2(2), pp. 215-230. https://doi.org/10.5281/zenodo.12774150

Luo, Y., Dungait, J.A., Zhao, X., Brookes, P.C., Durenkamp, M., Li, G. and Lin, Q., 2018. Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil. Land Degradation & Development, 29, pp. 2183-2188. https://doi.org/10.1002/ldr.2846

Manoharan, L., Rosenstock, N.P., Williams, A. and Hedlund, K., 2017. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity. Applied Soil Ecology, 115, pp. 53-59. https://doi.org/10.1016/j.apsoil.2017.03.012

Meng, L., Cheng, Z. and Li, S., 2024. Response of soil nitrogen-cycling genes to the coupling effects of arbuscular mycorrhizal fungi inoculation and biochar application in maize rhizosphere. Sustainability, 16, p. 3349. https://doi.org/10.3390/su16083349

Molina-Montenegro D., 2013. Evaluación de la aplicación de biochar en un cultivo de Physalis peruviana L. (UCHUVA). Tesis de licenciatura, Facultad de ciencias, Pontificia Universidad Saveriana. Bogotá D.C. pp. 1-50.

Montesinos?Navarro, A., Segarra?Moragues, J.G., Valiente?Banuet, A. and Verdú, M., 2012. Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytologist, 19, pp. 835-844. https://doi.org/10.1111/j.1469-8137.2012.04290.x

Muthukumar, T. and Sathya, R., 2017. Endorhizal fungal association and colonization patterns in Solanaceae. Polish Botanical Journal, 62, pp. 287-299. https://doi.org/10.1515/pbj-2017-0016

Narzari, R., Bordoloi, N., Chutia, R.S., Borkotoki, B., Gogoi, N., Bora, A. and Kataki, R., 2015. Biochar: an overview on its production, properties and potential benefits. Biology, Biotechnology and Sustainable Development, 1, pp. 13-40.

Nongkling, P. and Kayang, H., 2017. Soil physicochemical properties and its relationship with AMF spore density under two cropping systems. Current Research in Environmental and Applied Mycology, 7, pp. 33-39. http://doi.org/10.5943/cream/7/1/5

Osco Tarqui C.R. and Blanco-Villacorta M.W., 2021. Uso del biochar en la producción agrícola. Revista Estudiantil AGRO-VET. Facultad de Agronomía, Universidad Mayor de San Andrés. Vol. 5. pp. 83-87. La Paz, Bolivia. https://orcid.org/0000-0001-9266-9972

Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B. and Kamili, A.N., 2021. Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs, pp. 1-20. https://doi.org/10.1007/978-3-030-61010-4_1

Palansooriya, K.N., Wong, J.T.F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S.X., Bolan N., Wang H. and Ok, Y.S., 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1, pp. 3-22. https://doi.org/10.1007/s42773-019-00009-2

Penn, C.J. and Camberato, J.J., 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9, p. 120. https://doi.org/10.3390/agriculture9060120

Phillips, J.M. and Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, pp. 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3

Prado, B., Duwig, C., Hidalgo, C., Müller, K., Mora, L., Raymundo, E. and Etchevers, J.D., 2014. Transport, sorption and degradation of atrazine in two clay soils from Mexico: Andosol and Vertisol. Geoderma, 232, pp. 628-639. https://doi.org/10.1016/j.geoderma.2014.06.011

Purin, S. and Rillig, M.C., 2008. Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiology Letters, 279(1), 8-14. https://doi.org/10.1111/j.1574-6968.2007.01007.x

Quiñones-Aguilar, E.E., Montoya-Martínez, A.C., Rincón-Enriquez, G., Lobit, P. and López-Pérez, L., 2016. Effectiveness of native arbuscular mycorrhizal consortia on the growth of Agave inaequidens. Journal of Soil science and Plant Nutrition, 16, pp. 1052-1064. http://dx.doi.org/10.4067/S0718-95162016005000077

Rivera-García, J.A., Díaz, T., Contreras-Cornejo, H. Á., Larsen, J., González-Esquivel, C.E., López-Pérez, L., Barreto-Barriga, O., Ortiz-Salgado D.A. and Real-Santillán, R.O., 2025. Biochar alters maize growth, mycorrhizal associations and fall armyworm performance. Plant and Soil, 509(1), pp. 487-499. https://doi.org/10.1007/s11104-024-06874-6

Rollon, R.J.C., Almendras-Ferraren, A.S. and Ferraren, D.O., 2017. Effects of biochar application on potting media chemical properties, arbuscular mycorrhizal fungi spore density, growth and nutrient uptake of sorghum (Sorghum vulgare L.). Advances in Agriculture & Botanics, 9(3), pp. 119-135.

Rubio-Marcos, S., 2024. Evaluación de consorcios micorrízicos y biochar en el crecimiento y desarrollo de girasol. Tesis de Licenciatura, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, p. 62.

Ruiz-Camou, C., Núñez, J. and Musule, R., 2023. Evaluating the environmental performance of mezcal production in Michoacán, México: A life cycle assessment approach. The International Journal of Life Cycle Assessment, 28, pp. 1658-1671. https://doi.org/10.1007/s11367-023-02237-y

Sanders, I.R., 2002. Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. The American Naturalist, 160, pp. 128-141. https://doi.org/10.1086/342085

Selvakumar, G., Krishnamoorthy, R., Kim, K. and Sa, T., 2016. Propagation technique of arbuscular mycorrhizal fungi isolated from coastal reclamation land. European Journal of Soil Biology, 74, pp. 39-44. https://doi.org/10.1016/j.ejsobi.2016.03.005

Sensoy, S., Demir, S., Turkmen, O., Erdinc, C. and Savur, O.B., 2007. Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Scientia Horticulturae, 113, pp. 92-95. https://doi.org/10.1016/j.scienta.2007.01.023

SIAP, 2025. Servicio de Información, Agroalimentaria y Pesquera. https://nube.agricultura.gob.mx/cierre_agricola/ Consultado el 29 de mayo de 2025.

Singh, T.B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D. and Dantu, P.K., 2020. Role of organic fertilizers in improving soil fertility. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture. Springer, Cham. 3 pp. 61-77. https://doi.org/10.1007/978-3-030-41552-5_3

Sivakumar, N., 2013. Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Annals of Microbiology, 63, pp. 151-160. https://doi.org/10.1007/s13213-012-0455-2

Smith, S.E. and Read, D.J., 2010. Mycorrhizal symbiosis. Academic press.

Sun, J., Jia, Q., Li, Y., Zhang, T., Chen, J., Ren, Y., Dong K., Xu S., Nan-Nan S. and Fu, S., 2022. Effects of arbuscular mycorrhizal fungi and biochar on growth, nutrient absorption, and physiological properties of maize (Zea mays L.). Journal of Fungi, 8, p. 1275. https://doi.org/10.3390/jof8121275

Treseder, K.K., 2013. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil, 371, pp. 1-13. https://doi.org/10.1007/s11104-013-1681-5

Trinidad-Cruz, J.R., Quiñones-Aguilar, E.E., Hernández-Cuevas, L.V., López-Pérez, L. and Rincón-Enríquez, G., 2017. Hongos micorrízicos arbusculares asociados a la rizosfera de Agave cupreata en regiones mezcaleras del estado de Michoacán, México. Revista Mexicana de Micología, 45, pp. 13-25. https://doi.org/10.33885/sf.2017.0.1164

Wang, J. and Wang, S., 2019. Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, pp. 1002-1022. https://doi.org/10.1016/j.jclepro.2019.04.282

Wen, Y., Wu, R., Qi, D., Xu, T., Chang, W., Li, K., Fang X. and Song, F., 2024. The effect of AMF combined with biochar on plant growth and soil quality under saline-alkali stress: Insights from microbial community analysis. Ecotoxicology and Environmental Safety, 281, p. 116592. https://doi.org/10.1016/j.ecoenv.2024.116592

Willis, A., Rodrigues, B.F. and Harris, P.J., 2013. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 32, pp. 1-20. https://doi.org/10.1080/07352689.2012.683375

Yang, R., Cai, X., Li, X., Christie, P., Zhang, J. and Gai, J., 2017. Temperature?mediated local adaptation alters the symbiotic function in arbuscular mycorrhiza. Environmental Microbiology, 19, pp.2616-2628. https://doi.org/10.1111/1462-2920.13737

Yusif, S.A. and Dare, M.O., 2016. Effect of biochar application and arbuscular mycorrhizal inoculation on root colonization and soil chemical properties. International Annals of Science, 1, pp. 33-38. https://doi.org/10.21467/ias.1.1.33-38

Zheng, H., Liu, D., Liao, X., Miao, Y., Li, Y., Li, J., Yuan J., Chen Z. and Ding, W., 2022. Field-aged biochar enhances soil organic carbon by increasing recalcitrant organic carbon fractions and making microbial communities more conducive to carbon sequestration. Agriculture, Ecosystems & Environment, 340, P. 108177. https://doi.org/10.1016/j.agee.2022.108177

Ziane, H., Hamza, N. and Meddad-Hamza, A., 2021. Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediterranean agroecosystem. Journal of the Saudi Society of Agricultural Sciences, 20, pp. 454-458. https://doi.org/10.1016/j.jssas.2021.05.009




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.64399

DOI: http://dx.doi.org/10.56369/tsaes.6439



Copyright (c) 2025 Alfredo Reyes Tena, Luiz López Pérez, Lizbeth Vázquez Lezama, Dario Flores Murillo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.