GENOTYPE AND PHENOTYPE ANALYSIS OF ANTIMICROBIAL RESISTANCE MECHANISMS IN Corynebacterium pseudotuberculosis

Dan Israel Zavala-Vargas, Roberto Montes-de-Oca-Jiménez, Martha Elba Ruiz-Riva-Palacio, Adriana del Carmen Gutiérrez-Castillo, Pilar Eliana Rivadeneira-Barreiro, Gabriel Arteaga-Troncoso, Pablo Cleomenes Zambrano-Rodríguez, Pedro Sánchez-Aparicio, José Antonio Ibancovichi-Camarillo, Siomar de-Castro-Soares, Vasco Ariston de Carvaho Acevedo

Abstract


Background. Corynebacterium pseudotuberculosis (C. pseudotuberculosis) is a Gram-positive intracellular bacterium that causes caseous lymphadenitis and causes significant economic damage to the livestock industry by affecting animal physical condition and decreasing milk and meat production. Furthermore, due to its biochemical characteristics, it is a difficult-to-treat bacterium with multiple antimicrobial resistance phenotypes. Antimicrobial resistance in C. pseudotuberculosis is a global problem that threatens the ability of pharmacotherapy to treat common infections and affect livestock worldwide. Objective. In this study, a comparative analysis of antimicrobial resistance phenotypes and genotypes was performed. Initially, an extensive search was carried out for antibacterials that were reported in the literature with antimicrobial resistance in C. pseudotuberculosis. Subsequently, the genomes reported in the NCBI database were taken and analyzed using the Resistance Gene Identifier (RGI) software to obtain a prediction of the pathogen's resistance genes. Results. In the bibliographic search, high resistance to beta-lactams such as penicillin, amoxicillin, clindamycin, gentamicin, kanamycin, erythromycin, and trimethoprim/sulfamethoxazole was observed. These data are consistent with the results obtained from the resistance gene prediction. However, we were unable to predict resistance sequences against some antimicrobials such as penicillin. This can be explained by some structural characteristics of the pathogen, in addition to the environmental factors that lead it to generate resistance. Implications. The creation of predictive algorithms for antibacterial resistance is on the rise, although these seek to optimize treatment against pathogens, antibacterial resistance involves more factors than the presence of resistance genes. Conclusion. C. pseudotuberculosis is a pathogen that carries many antibacterial resistance genes, and several environmental and structural factors must be considered before choosing an appropriate treatment. Furthermore, our study proposes antimicrobials reported to have lower resistance that can be used in the treatment of caseous lymphadenitis in sheep.

Keywords


Antibacterial resistance; Corynebacterium pseudotuberculosis; gene prediction; antimicrobials.

Full Text:

PDF

References


Abd El Tawab, A.A., Rizk, A.M., Afifi, S.E. and Mohamed, S.R., 2019. Corynebacterium pseudotuberculosis infection in small ruminants and molecular study of virulence and resistance genes in Beni-Suef governorate. Benha Veterinary Medical Journal, 37, pp. 122-127.

Abdulrahman, R.F., 2021. Virulence potential, antimicrobial susceptibility and phylogenetic analysis of Corynebacterium pseudotuberculosis isolated from caseous lymphadenitis in sheep and goats in Duhok City, Iraq. Advances in Animal and Veterinary Sciences, 9(6), pp. 919-925. https://doi.org/10.17582/journal.aavs/2021/9.6.919.925

Abebe, D. and Tessema, T.S., 2015. Determination of the prevalence of Corynebacterium pseudotuberculosis and the antimicrobial susceptibility pattern of isolates from lymph nodes of sheep and goats at an organic export abattoir, Modjo, Ethiopia. Letters in Applied Microbiology, 61(5), pp. 469–476. https://doi.org/10.1111/lam.12482

Alcock, B.P., Huynh, W., Chalil, R., Smith, K.W., Raphenya, A.R., Wlodarski, M.A., Edalatmand, A., Petkau, A., Syed, S.A., Tsang, K.K., Baker, S.J.C., Dave, M., McCarthy, M.C., Mukiri, K.M., Nasir, J.A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., Kwong, M., Liang, Z.C., Niu, K.C., Shan, P., Yang, J.Y.J., Gray, K.L., Hoad, G.R., Jia, B., Bhando, T., Carfrae, L.A., Farha, M.A., French, S., Gordzevich, R., Rachwalski, K., Tu, M.M., Bordeleau, E., Dooley, D., Griffiths, E., Zubyk, H.L., Brown, E.D., Maguire, F., Beiko, R.G., Hsiao, W.W.L., Brinkman, F.S.L. and Van Domselaar, G., 2023. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), pp.D690–D699. https://doi.org/10.1093/nar/gkac920

Britz, E., Spier, S.J., Kass, P.H., Edman, J.M. and Foley, J.E., 2014. The relationship between Corynebacterium pseudotuberculosis biovar equi phenotype with location and extent of lesions in horses. The Veterinary Journal, 200(2), pp. 282–286. https://doi.org/10.1016/j.tvjl.2014.03.009

Cabello-Vílchez, A.M., Dávila-Barclay, A. and Tsukayama, P., 2022. Isolation and genomic analysis of an intracellular Mycobacterium gordonae from a free-living Acanthamoeba sp. in a hospital environment in Lima, Peru. Microbiology Resource Announcements, 11(11), pp. e00784-22. https://doi.org/10.1128/mra.00784-22

Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Sayers, E.W., 2016. GenBank. Nucleic Acids Research, 44(D1), D67-D72. https://doi.org/10.1093/nar/gkv1276

Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E. and Courvalin, P., 2007. Modes and modulations of antibiotic resistance gene expression. Clinical Microbiology Reviews, 20(1), pp. 79–114. https://doi.org/10.1128/CMR.00015-06

El Damaty, H. M., El-Demerdash, A.S., Abd El-Aziz, N.K., Yousef, S.G., Hefny, A.A., Abo Remela, E.M., Shaker, A. and Elsohaby, I., 2023. Molecular characterization and antimicrobial susceptibilities of Corynebacterium pseudotuberculosis isolated from caseous lymphadenitis of smallholder sheep and goats. Animals, 13(14), 2337. https://doi.org/10.3390/ani13142337

Flemming, H.C., Neu, T.R. and Wozniak, D.J., 2007. The EPS matrix: The “house of biofilm cells.” Journal of Bacteriology, 189(22), pp. 7945–7947. https://doi.org/10.1128/JB.00858-07

Fontaine, M.C. and Baird, G.J., 2008. Caseous lymphadenitis. Small Ruminant Research, 76(1-2), pp. 42–48. https://doi.org/10.1016/j.smallrumres.007.12.025

Gallardo, A.A., Toledo, R.A., González Pasayo, R.A., Azevedo, V., Robles, C., Paolicchi, F.A. and Estevao Belchior, S.G., 2019. Corynebacterium pseudotuberculosis biovar ovis: Evaluación de la sensibilidad antibiótica in vitro. Revista Argentina de Microbiología, 51(2), pp. 123–129. https://doi.org/10.1016/j.ram.2018.12.001

Gaurav, A., Bakht, P., Saini, M., Pandey, S. and Pathania, R., 2023. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology, 169(5), 001333. https://doi.org/10.1099/mic.0.001333

Hajiagha, M.N. and Kafil, H.S., 2023. Efflux pumps and microbial biofilm formation. Infection, Genetics and Evolution, 112, 105459. https://doi.org/10.1016/j.meegid.2023.105459

Held, M., Hou, H., Miri, M., Huynh, C., Ross, L., Hossain, M.S., Sato, S., Tabata, S., Perry, J., Wang, T.L. and Szczyglowski, K., 2014. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. The Plant Cell, 26(2), pp. 678–694. https://doi.org/10.1105/tpc.113.119362

Iannetta, A.A., Minton, N. E., Uitenbroek, A.A., Little, J.L., Stanton, C.R., Kristich, C.J. and Hicks, L.M., 2021. IreK-mediated, cell wall-protective phosphorylation in Enterococcus faecalis. Journal of Proteome Research, 20(11), pp. 5131–5144. https://doi.org/10.1021/acs.jproteome.1c00635

Jamal, M., Tasneem, U., Hussain, T. and Andleeb, S., 2015. Bacterial biofilm: Its composition, formation, and role in human infections. Research Reviews in Microbiology and Biotechnology, 52(4), pp. 1701–1718. https://doi.org/10.1007/s42770-021-00624-x

Jufri, R.F., 2020. The effect of environmental factors on microbial growth. Journal of Louisiana Lifesciences, 1(1), pp. 12-17.

Kim, D.W. and Cha, C.J., 2021. Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Experimental & Molecular Medicine, 53, pp. 301–309. https://doi.org/10.1038/s12276-021-00569-z

Li, H., Yang, H., Zhou, H., Li, Z., Yi, X., Xu, W., Wang, Y. and Hu, Z., 2018. Isolation, antibiotic resistance, virulence traits, and phylogenetic analysis of Corynebacterium pseudotuberculosis from goats in southwestern China. Small Ruminant Research, 168, pp. 69–74. https://doi.org/10.1016/j.smallrumres.2018.09.015

Mak, S., Xu, Y. and Nodwell, J.R., 2014. Antibiotic resistance in antibiotic-producing bacteria. Molecular Microbiology, 93(3), pp. 391–402. https://doi.org/10.1111/mmi.12689

Markova, J., Langova, D., Babak, V. and Kostovova, I., 2024. Ovine and caprine strains of Corynebacterium pseudotuberculosis on Czech farms: A comparative study. Microorganisms, 12(5), 875. https://doi.org/10.3390/microorganisms12050875

Mulcahy, H., Charron-Mazenod, L. and Lewenza, S., 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens, 4(11), e1000213. https://doi.org/10.1371/journal.ppat.1000213

Nageeb, W.M. and Hetta, H.F., 2023. Pangenome analysis of Corynebacterium striatum: Insights into a neglected multidrug-resistant pathogen. BMC Microbiology, 23(1), 252. https://doi.org/10.1186/s12866-023-02996-6

Rhodes, D.M., Magdesian, K.G., Byrne, B.A., Kass, P.H., Edman, J. and Spier, S.J., 2015. Minimum inhibitory concentrations of equine Corynebacterium pseudotuberculosis isolates (1996–2012). Journal of Veterinary Internal Medicine, 29(1), pp. 327–332. https://doi.org/10.1111/jvim.12534

Ruiz, H., Ferrer, L.M., Ramos, J.J., Baselga, C., Alzuguren, O., Tejedor, M.T., de Miguel, R. and Lacasta, D., 2020. The relevance of caseous lymphadenitis as a cause of culling in adult sheep. Animals, 10(11), 1962. https://doi.org/10.3390/ani10111962

Schlicher, J., Schmitt, S., Stevens, M.J.A., Stephan, R. and Ghielmetti, G., 2021. Molecular characterization of Corynebacterium pseudotuberculosis isolated over a 15-year period in Switzerland. Veterinary Sciences, 8(8), 151. https://doi.org/10.3390/vetsci8080151

Szwako, A., Ortíz, N. and López, D., 2014. Prevalencia de linfadenitis caseosa (Corynebacterium pseudotuberculosis) en caprinos de establecimientos lecheros del departamento central - Paraguay, 2012. Compendio de Ciencias Veterinarias, 4(1), pp. 24–29.

Swain, S.S., Sharma, D., Hussain, T. and Pati, S., 2020. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerging Microbes & Infections, 9(1), pp. 1651–1663. https://doi.org/10.1080/22221751.2020.1785334

Terab, A.M.A., Abdel Wahab, G.E.D., Ishag, H.Z.A., Khalil, N.A.H., El Tigani-Asil, E.T.A., Hashem, F.M., Halafalla, A.I., Shah, A.A.M. and Al Muhairi, S.S.M., 2021. Pathology, bacteriology, and molecular studies on caseous lymphadenitis in Camelus dromedarius in the Emirate of Abu Dhabi, UAE, 2015–2020. PLoS ONE, 16(6), e0252893. https://doi.org/10.1371/journal.pone.0252893

Torky, H.A., Saad, H.M., Khaliel, S.A., Kassih, A.T., Sabatier, J.M., Batiha, G.E.S., Hetta, H.F., Elghazaly, E.M. and De Waard, M., 2023. Isolation and molecular characterization of Corynebacterium pseudotuberculosis: Association with proinflammatory cytokines in caseous lymphadenitis pyogranulomas. Animals, 13(2), 296. https://doi.org/10.3390/ani13020296

Yeshitila, G., Gocmen, H., Tamakan, Y. and Hazel, H., 2023. Determination of antibiotic resistance pattern and molecular characterization of Corynebacterium pseudotuberculosis from lymph node samples of sheep and goats in Ethiopia. Pakistan Journal of Zoology, 55(1), pp. 1–7.

Zaw, M.T., Emran, N.A. and Lin, Z., 2018. Mutations within the rifampicin resistance-determining region of the rpoB gene associated with rifampicin resistance in Mycobacterium tuberculosis. Journal of Infection and Public Health, 11(5), pp. 605–610. https://doi.org/10.1016/j.jiph.2018.04.005




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.61926

DOI: http://dx.doi.org/10.56369/tsaes.6192



Copyright (c) 2025 Dan Israel Zavala-Vargas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.