GENOTYPE AND PHENOTYPE ANALYSIS OF ANTIMICROBIAL RESISTANCE MECHANISMS IN Corynebacterium pseudotuberculosis
Abstract
Keywords
Full Text:
PDFReferences
Abd El Tawab, A.A., Rizk, A.M., Afifi, S.E. and Mohamed, S.R., 2019. Corynebacterium pseudotuberculosis infection in small ruminants and molecular study of virulence and resistance genes in Beni-Suef governorate. Benha Veterinary Medical Journal, 37, pp. 122-127.
Abdulrahman, R.F., 2021. Virulence potential, antimicrobial susceptibility and phylogenetic analysis of Corynebacterium pseudotuberculosis isolated from caseous lymphadenitis in sheep and goats in Duhok City, Iraq. Advances in Animal and Veterinary Sciences, 9(6), pp. 919-925. https://doi.org/10.17582/journal.aavs/2021/9.6.919.925
Abebe, D. and Tessema, T.S., 2015. Determination of the prevalence of Corynebacterium pseudotuberculosis and the antimicrobial susceptibility pattern of isolates from lymph nodes of sheep and goats at an organic export abattoir, Modjo, Ethiopia. Letters in Applied Microbiology, 61(5), pp. 469–476. https://doi.org/10.1111/lam.12482
Alcock, B.P., Huynh, W., Chalil, R., Smith, K.W., Raphenya, A.R., Wlodarski, M.A., Edalatmand, A., Petkau, A., Syed, S.A., Tsang, K.K., Baker, S.J.C., Dave, M., McCarthy, M.C., Mukiri, K.M., Nasir, J.A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., Kwong, M., Liang, Z.C., Niu, K.C., Shan, P., Yang, J.Y.J., Gray, K.L., Hoad, G.R., Jia, B., Bhando, T., Carfrae, L.A., Farha, M.A., French, S., Gordzevich, R., Rachwalski, K., Tu, M.M., Bordeleau, E., Dooley, D., Griffiths, E., Zubyk, H.L., Brown, E.D., Maguire, F., Beiko, R.G., Hsiao, W.W.L., Brinkman, F.S.L. and Van Domselaar, G., 2023. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), pp.D690–D699. https://doi.org/10.1093/nar/gkac920
Britz, E., Spier, S.J., Kass, P.H., Edman, J.M. and Foley, J.E., 2014. The relationship between Corynebacterium pseudotuberculosis biovar equi phenotype with location and extent of lesions in horses. The Veterinary Journal, 200(2), pp. 282–286. https://doi.org/10.1016/j.tvjl.2014.03.009
Cabello-Vílchez, A.M., Dávila-Barclay, A. and Tsukayama, P., 2022. Isolation and genomic analysis of an intracellular Mycobacterium gordonae from a free-living Acanthamoeba sp. in a hospital environment in Lima, Peru. Microbiology Resource Announcements, 11(11), pp. e00784-22. https://doi.org/10.1128/mra.00784-22
Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Sayers, E.W., 2016. GenBank. Nucleic Acids Research, 44(D1), D67-D72. https://doi.org/10.1093/nar/gkv1276
Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E. and Courvalin, P., 2007. Modes and modulations of antibiotic resistance gene expression. Clinical Microbiology Reviews, 20(1), pp. 79–114. https://doi.org/10.1128/CMR.00015-06
El Damaty, H. M., El-Demerdash, A.S., Abd El-Aziz, N.K., Yousef, S.G., Hefny, A.A., Abo Remela, E.M., Shaker, A. and Elsohaby, I., 2023. Molecular characterization and antimicrobial susceptibilities of Corynebacterium pseudotuberculosis isolated from caseous lymphadenitis of smallholder sheep and goats. Animals, 13(14), 2337. https://doi.org/10.3390/ani13142337
Flemming, H.C., Neu, T.R. and Wozniak, D.J., 2007. The EPS matrix: The “house of biofilm cells.” Journal of Bacteriology, 189(22), pp. 7945–7947. https://doi.org/10.1128/JB.00858-07
Fontaine, M.C. and Baird, G.J., 2008. Caseous lymphadenitis. Small Ruminant Research, 76(1-2), pp. 42–48. https://doi.org/10.1016/j.smallrumres.007.12.025
Gallardo, A.A., Toledo, R.A., González Pasayo, R.A., Azevedo, V., Robles, C., Paolicchi, F.A. and Estevao Belchior, S.G., 2019. Corynebacterium pseudotuberculosis biovar ovis: Evaluación de la sensibilidad antibiótica in vitro. Revista Argentina de Microbiología, 51(2), pp. 123–129. https://doi.org/10.1016/j.ram.2018.12.001
Gaurav, A., Bakht, P., Saini, M., Pandey, S. and Pathania, R., 2023. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology, 169(5), 001333. https://doi.org/10.1099/mic.0.001333
Hajiagha, M.N. and Kafil, H.S., 2023. Efflux pumps and microbial biofilm formation. Infection, Genetics and Evolution, 112, 105459. https://doi.org/10.1016/j.meegid.2023.105459
Held, M., Hou, H., Miri, M., Huynh, C., Ross, L., Hossain, M.S., Sato, S., Tabata, S., Perry, J., Wang, T.L. and Szczyglowski, K., 2014. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. The Plant Cell, 26(2), pp. 678–694. https://doi.org/10.1105/tpc.113.119362
Iannetta, A.A., Minton, N. E., Uitenbroek, A.A., Little, J.L., Stanton, C.R., Kristich, C.J. and Hicks, L.M., 2021. IreK-mediated, cell wall-protective phosphorylation in Enterococcus faecalis. Journal of Proteome Research, 20(11), pp. 5131–5144. https://doi.org/10.1021/acs.jproteome.1c00635
Jamal, M., Tasneem, U., Hussain, T. and Andleeb, S., 2015. Bacterial biofilm: Its composition, formation, and role in human infections. Research Reviews in Microbiology and Biotechnology, 52(4), pp. 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
Jufri, R.F., 2020. The effect of environmental factors on microbial growth. Journal of Louisiana Lifesciences, 1(1), pp. 12-17.
Kim, D.W. and Cha, C.J., 2021. Antibiotic resistome from the One-Health perspective: Understanding and controlling antimicrobial resistance transmission. Experimental & Molecular Medicine, 53, pp. 301–309. https://doi.org/10.1038/s12276-021-00569-z
Li, H., Yang, H., Zhou, H., Li, Z., Yi, X., Xu, W., Wang, Y. and Hu, Z., 2018. Isolation, antibiotic resistance, virulence traits, and phylogenetic analysis of Corynebacterium pseudotuberculosis from goats in southwestern China. Small Ruminant Research, 168, pp. 69–74. https://doi.org/10.1016/j.smallrumres.2018.09.015
Mak, S., Xu, Y. and Nodwell, J.R., 2014. Antibiotic resistance in antibiotic-producing bacteria. Molecular Microbiology, 93(3), pp. 391–402. https://doi.org/10.1111/mmi.12689
Markova, J., Langova, D., Babak, V. and Kostovova, I., 2024. Ovine and caprine strains of Corynebacterium pseudotuberculosis on Czech farms: A comparative study. Microorganisms, 12(5), 875. https://doi.org/10.3390/microorganisms12050875
Mulcahy, H., Charron-Mazenod, L. and Lewenza, S., 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens, 4(11), e1000213. https://doi.org/10.1371/journal.ppat.1000213
Nageeb, W.M. and Hetta, H.F., 2023. Pangenome analysis of Corynebacterium striatum: Insights into a neglected multidrug-resistant pathogen. BMC Microbiology, 23(1), 252. https://doi.org/10.1186/s12866-023-02996-6
Rhodes, D.M., Magdesian, K.G., Byrne, B.A., Kass, P.H., Edman, J. and Spier, S.J., 2015. Minimum inhibitory concentrations of equine Corynebacterium pseudotuberculosis isolates (1996–2012). Journal of Veterinary Internal Medicine, 29(1), pp. 327–332. https://doi.org/10.1111/jvim.12534
Ruiz, H., Ferrer, L.M., Ramos, J.J., Baselga, C., Alzuguren, O., Tejedor, M.T., de Miguel, R. and Lacasta, D., 2020. The relevance of caseous lymphadenitis as a cause of culling in adult sheep. Animals, 10(11), 1962. https://doi.org/10.3390/ani10111962
Schlicher, J., Schmitt, S., Stevens, M.J.A., Stephan, R. and Ghielmetti, G., 2021. Molecular characterization of Corynebacterium pseudotuberculosis isolated over a 15-year period in Switzerland. Veterinary Sciences, 8(8), 151. https://doi.org/10.3390/vetsci8080151
Szwako, A., Ortíz, N. and López, D., 2014. Prevalencia de linfadenitis caseosa (Corynebacterium pseudotuberculosis) en caprinos de establecimientos lecheros del departamento central - Paraguay, 2012. Compendio de Ciencias Veterinarias, 4(1), pp. 24–29.
Swain, S.S., Sharma, D., Hussain, T. and Pati, S., 2020. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerging Microbes & Infections, 9(1), pp. 1651–1663. https://doi.org/10.1080/22221751.2020.1785334
Terab, A.M.A., Abdel Wahab, G.E.D., Ishag, H.Z.A., Khalil, N.A.H., El Tigani-Asil, E.T.A., Hashem, F.M., Halafalla, A.I., Shah, A.A.M. and Al Muhairi, S.S.M., 2021. Pathology, bacteriology, and molecular studies on caseous lymphadenitis in Camelus dromedarius in the Emirate of Abu Dhabi, UAE, 2015–2020. PLoS ONE, 16(6), e0252893. https://doi.org/10.1371/journal.pone.0252893
Torky, H.A., Saad, H.M., Khaliel, S.A., Kassih, A.T., Sabatier, J.M., Batiha, G.E.S., Hetta, H.F., Elghazaly, E.M. and De Waard, M., 2023. Isolation and molecular characterization of Corynebacterium pseudotuberculosis: Association with proinflammatory cytokines in caseous lymphadenitis pyogranulomas. Animals, 13(2), 296. https://doi.org/10.3390/ani13020296
Yeshitila, G., Gocmen, H., Tamakan, Y. and Hazel, H., 2023. Determination of antibiotic resistance pattern and molecular characterization of Corynebacterium pseudotuberculosis from lymph node samples of sheep and goats in Ethiopia. Pakistan Journal of Zoology, 55(1), pp. 1–7.
Zaw, M.T., Emran, N.A. and Lin, Z., 2018. Mutations within the rifampicin resistance-determining region of the rpoB gene associated with rifampicin resistance in Mycobacterium tuberculosis. Journal of Infection and Public Health, 11(5), pp. 605–610. https://doi.org/10.1016/j.jiph.2018.04.005
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.61926
DOI: http://dx.doi.org/10.56369/tsaes.6192
Copyright (c) 2025 Dan Israel Zavala-Vargas

This work is licensed under a Creative Commons Attribution 4.0 International License.