Effect of n-1-naphthylpthalamic acid and 6-benzylaminopurine on root formation and the induction of new shoots in Agave spp.

Bebeto Garcia Rojas, Amaury Martin Arzate Fernandez, Jesús Ignacio Reyes Díaz, Tomás Héctor Norman Mondragón

Abstract


Background. The Agave genus is of great importance due to its ancestral use as a source of various products, which highlights the need to ensure its propagation. To achieve this, it is essential to understand the development of apical meristems, key structures in the formation of plant architecture. Thus, 6-Benzylaminopurine (6-BAP) acts as an endogenous cytokinin, stimulating buds and lateral roots, while n-1-naphthylphthalamic acid (NPA) functions as an auxin inhibitor affecting its transport in different organs. This knowledge is crucial to understand how these plant growth regulators influence the development of agave plants. Objective. To evaluate the effect of n-1-naphthylphthalamic acid and 6-benzylaminopurine on root formation and the induction of new shoots in Agave salmiana and A. angustifolia. Methodology. Seven treatments with different concentrations of NPA and 6-BAP were applied to two Agave species in acclimatization chambers and semi-hydroponic systems. Results. The results showed that Agave species responded variably in terms of root development. Furthermore, both NPA and 6-BAP, applied individually and in combination, were able to suppress apical dominance and stimulate the sprouting of new lateral buds. Implications. The findings of this research suggest the potential of these treatments as a method to improve multiplication rates and also provide an example of the interaction between auxins and cytokinins in the maintenance of meristems. Conclusions. The effect of NPA and 6-BAP treatments on root development was highly variable, while they were highly effective in the formation of new shoots.

Keywords


n-1-naphthylphthalamic acid; 6-benzylaminopurine; shoot apical meristem; root apical meristem; Agave.

Full Text:

PDF

References


Abas, L., Kolb, M., Stadlmann, J., Janacek, D.P., Lukic, K., Schwechheimer, C., Sazanov, L.A., Mach, L., Friml, J. and Hammes, U.Z., 2021. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. Proceedings of the National Academy of Sciences, 118(1), p. e2020857118. https://doi.org/10.1073/pnas.2020857118

Abraham Juárez, M.J., Hernández Cárdenas, R., Santoyo Villa, J.N., O’Connor, D., Sluis, A., Hake, S., Ordaz-Ortiz, J., Terry, L. and Simpson, J., 2015. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana. Journal of Experimental Botany, 66(13), pp. 3893–3905. https://doi.org/10.1093/jxb/erv191

Alejandro-Torres, E.O., 2022. Producción de brotes meristemáticos en bajas concentraciones de citocininas para la propagación in vitro de tomate, Solanum lycopersicum. [bachelorThesis] La Libertad: Universidad Estatal Península de Santa Elena, 2022. Available at: https://repositorio.upse.edu.ec/handle/46000/7538 [Accessed 22 May 2025].

Arizaga, S. and Ezcurra, E., 1995. Insurance against reproductive failure in a semelparous plant: bulbil formation in Agave macroacantha flowering stalks. Oecologia, 101(3), pp. 329–334. https://doi.org/10.1007/BF00328819

Azizi, P., Rafii, M.Y., Maziah, M., Abdullah, S.N.A., Hanafi, M.M., Latif, M.A., Rashid, A.A. and Sahebi, M., 2015. Understanding the shoot apical meristem regulation: A study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of Development, 135, pp. 1–15. https://doi.org/10.1016/j.mod.2014.11.001

Bejines Ramos, G. and González Eguiarte, D.R., 2017. Vías de penetración de un fertilizante foliar en Agave tequilana Weber var. Azul. Revista Mexicana de Ciencias Agrícolas, 8(4), pp. 985–991. https://doi.org/10.29312/remexca.v8i4.22

Buchanan, B.B., Gruissem W., and L. Jones R., 2015. Biochemistry and Molecular Biology of Plants, 2nd Edition. Oxford: American Society of Plant Biologist.

Cárdenas-Aquino, M.D.R., Camas-Reyes, A., Valencia-Lozano, E., López-Sánchez, L., Martínez-Antonio, A. and Cabrera-Ponce, J.L., 2023. The Cytokinins BAP and 2-iP Modulate Different Molecular Mechanisms on Shoot Proliferation and Root Development in Lemongrass (Cymbopogon citratus). Plants, 12(20), p. 3637. https://doi.org/10.3390/plants12203637

Ch, A.-A., Iracheta-Donjuan, L., Martínez-Aguilar, J., López-Gómez, P. and Barrios-Ayala, A., 2015. Morphological characterization of endemic Agave cupreata species of Mexico. Phyton, 84(1), pp. 148–162. https://doi.org/10.32604/phyton.2015.84.148

Colunga-García, P. and Zizumbo-Villarreal, D., 2007. Tequila and other Agave spirits from west-central Mexico: current germplasm diversity, conservation and origin. Biodiversity and Conservation, 16(6), pp. 1653–1667. https://doi.org/10.1007/s10531-006-9031-z

Espinoza González, J., Bustamante González, A. and Cedeño García, G., 2022. Efectos Del Tamaño De Cormo Y Bencilaminopurina Sobre La Proliferación Del Plátano En Dos Ambientes De Propagación. Ciencia y Agricultura, [online] 19(1). https://doi.org/10.19053/01228420.v19.n1.2022.13905

García-Mendoza, A., 2002. Distribution of agave (Agavaceae) in México.

Hussein, H. a. A., Sharaf El-Din, M.N., Kasem, M.M. and Lotfy, E.A., 2017. Influence of Some Plant Growth Substances on Shoot and Root Initiations of Chrysanthemum Explants in Vitro. Journal of Plant Production, 8(1), pp. 71–76. https://doi.org/10.21608/jpp.2017.37816

Jiménez Muñoz, E., Prieto-García, F., Prieto Méndez, J., Acevedo Sandoval, O.A. and Rodríguez Laguna, R., 2016. Caracterización fisicoquímica de cuatro especies de agaves con potencialidad en la obtención de pulpa de celulosa para elaboración de papel. DYNA, 83(197), p. 232. https://doi.org/10.15446/dyna.v83n197.52243

Jing, H. and Strader, L.C., 2019. Interplay of Auxin and Cytokinin in Lateral Root Development. International Journal of Molecular Sciences, 20(3), p. 486. https://doi.org/10.3390/ijms20030486

Kulka, R.G., 2008. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene. Journal of Experimental Botany, 59(9), pp. 2361–2370. https://doi.org/10.1093/jxb/ern106

MacNeill, B.N., Ortiz-Brunel, J.P., Rodríguez, A., Ruiz-Sánchez, E., Navarro-Moreno, J., Hofford, N.P. and McKain, M.R., 2023. Floral Diversity and Pollination Syndromes in Agave subgenus Manfreda. Integrative And Comparative Biology, 63(6), pp. 1376–1390. https://doi.org/10.1093/icb/icad118

Mesa, D., Romero, A. and Cruz, A.M., 2002. Estudio de diferentes concentraciones de bencilaminopurina (BAP) en la micropropagación in vitro de la Leucaena leucocephala vc Perú. Revista Cubana de Ciencia Agrícola, 36(3), pp. 271–274.

Nongmaithem, S., Devulapalli, S., Sreelakshmi, Y. and Sharma, R., 2020. Is naphthylphthalamic acid a specific phytotropin? It elevates ethylene and alters metabolic homeostasis in tomato. Plant Science, 291, p. 110358. https://doi.org/10.1016/j.plantsci.2019.110358

Oono, Y., Ooura, C., Rahman, A., Aspuria, E.T., Hayashi, K., Tanaka, A. and Uchimiya, H., 2003. p -Chlorophenoxyisobutyric Acid Impairs Auxin Response in Arabidopsis Root. Plant Physiology, 133(3), pp. 1135–1147. https://doi.org/10.1104/pp.103.027847

Roman, H., Girault, T., Barbier, F., Péron, T., Brouard, N., P?n?ík, A., Novák, O., Vian, A., Sakr, S., Lothier, J., Le Gourrierec, J. and Leduc, N., 2016. Cytokinins Are Initial Targets of Light in the Control of Bud Outgrowth. Plant Physiology, 172(1), pp. 489–509. https://doi.org/10.1104/pp.16.00530

Saniewski, M., Góraj, J., W?grzynowicz-Lesiak, E., Miyamoto, K. and Ueda, J., 2014. Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species. Acta Agrobotanica, 67(2), pp. 85–92. https://doi.org/10.5586/aa.2014.028

Schaller, G.E., Bishopp, A. and Kieber, J.J., 2015. The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. The Plant Cell, 27(1), pp. 44–63. https://doi.org/10.1105/tpc.114.133595

Teale, W. and Palme, K., 2018. Naphthylphthalamic acid and the mechanism of polar auxin transport. Journal of Experimental Botany, 69(2), pp. 303–312. https://doi.org/10.1093/jxb/erx323

Trejo, L., Soriano, D., Romano-Grande, E., Sánchez-Carmona, B. and Dávila-Navarro, D.E., 2024. Diversity of reproductive characters, seed set, and viability of Agave seeds used for pulque production and their wild relatives in Tlaxcala, Mexico. Genetic Resources and Crop Evolution, 71(6), pp. 2877–2903. https://doi.org/10.1007/s10722-023-01803-5

Varas, E., Valladares, S., Vielba, J., Vidal, N. and Sánchez, C., 2023. Expression of CsSCL1 and Rooting Response in Chestnut Leaves Are Dependent on the Auxin Polar Transport and the Ontogenetic Origin of the Tissues. Plants, 12(14), p. 2657. https://doi.org/10.3390/plants12142657

Zhang, S., Qiu, L., Zheng, Y., Wang, W., Zhao, H. and Yang, D., 2023a. Comparative transcriptome analysis reveals the regulatory effects of exogenous auxin on lateral root development and tanshinone accumulation in Salvia miltiorrhiza. Planta, 258(2), p. 33. https://doi.org/10.1007/s00425-023-04193-1

Zhang, Y., Guo, C., Hu, J., Liu, F., Fu, S., Guo, X., Chen, Q., Zhang, L., Zhu, L. and Hou, X., 2023b. Effects of 6-Benzylaminopurine Combined with Prohexadione-Ca on Yield and Quality of Chrysanthemum morifolium Ramat cv. Hangbaiju. Agriculture, 13(2), p. 444. https://doi.org/10.3390/agriculture13020444




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.60491

DOI: http://dx.doi.org/10.56369/tsaes.6049



Copyright (c) 2025 Amaury-M. Arzate Fernandez, Bebeto Garcia Rojas, Jesús Ignacio Reyes Díaz, Tomás Héctor Norman Mondragón

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.