Effect of foliar application of stimulants on the growth, physiology and fruit yield of X'catik chili pepper (Capsicum annuum L.)]

Ana Lilia Ruiz Jiménez, Fátima del R. Yam-Herrera, Joaquín Sergio López-Vázquez, Juan Díaz-Mayo, Luis Latournerie-Moreno, Rene Garruña-Hernández

Abstract


Background. Stimulants act on the plant to improve its vigor, biomass, fruit yield, and quality. Objective. To evaluate the effect of the application of stimulants (Biozyme, Activol, and Grofol+Aminofit) on the vegetative development and yield of X'catik chili pepper under greenhouse conditions. Methodology. Stimulants were applied foliarly for four weeks in two independent experiments. Experiment one was conducted during vegetative development, and experiment two during the flowering stage. In experiment one, growth and physiological variables were evaluated, and in experiment two, the number of fruits, fruit weight, and yield were evaluated. Results. Activol increased stem height, and Grofol+Aminofit increased the number of leaves and plant dry weight. In fruit yield, plants treated with Activol had lower yields (1.55 kg total weight) than the control. The remaining treatments showed no differences from the control. Implication. The use of stimulants could be an option to improve the growth of X'catik chili pepper (Capsicum annuum L.). Conclusion. Activol increased stem height but did not affect total fruit yield. Also, no distinct pattern of the effect of stimulants on plant physiology was observed.

Keywords


stimulants; growth; yield; vegetables crops.

Full Text:

PDF

References


Basulto, F.S. and León, M.J.Z., 2021. Estados de maduración de frutos de chile Xcat ik (Capsicum annuum L) y su relación con el periodo de almacenamiento en la germinación de las semillas. Brazilian Journal of Animal and Environmental Research, 4(3), pp. 4674–4683. https://doi.org/10.34188/bjaerv4n3-145

Bertolino, L.T., Caine, R.S., Gray, J. E., 2019. Impact of stomatal density and morphology on water-use efficiency in a Changing World. Frontiers in Plant Science, 10, p. 225. https://doi.org/10.3389/fpls.2019.00225

Binenbaum, J., Weinstain, R., Shani, E., 2018. Gibberellin localization and transport in plants. Trends in Plant Science, 23(5), pp. 410–421. https://doi.org/10.1016/j.tplants.2018.02.005

Bulgari, R., Franzoni, G. and Ferrante, A., 2019. Biostimulants Application in horticultural crops under abiotic stress conditions. Agronomy, 9, p. 306. https://doi.org/10.3390/agronomy9060306

Caruso, G., De Pascale, S., Cozzolino, E., Cuciniello, A., Cenvinzo, V., Bonini, P., Rouphael, Y., 2019. Yield and nutritional quality of vesuvian piennolo tomato PDO as affected by farming system and biostimulant. Application Agronomy, 9, p. 505. https://doi.org/10.3390/agronomy9090505

Castillo-Aguilar, C. C., Castilla, L. L., Pacheco, N., Cuevas-Bernardino, J. C., Garruña, R, R., Andueza-Noh, R. H., 2021. Phenotypic diversity and capsaicinoid content of chilli pepper landraces (Capsicum spp.) from the Yucatan Peninsula. Plant Genetic Resources, 19(2), pp. 159–166. https://doi.org/10.1017/S1479262121000204

Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R. and Rouphael, Y., 2017. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science, 8, p. 2202. https://doi.org/10.3389/fpls.2017.02202

Colla, G., Rouphael, Y., 2020. Editorial: Microalgae: New Source of Plant Biostimulants. Agronomy, 10, p. 1240. https://doi.org/10.3390/agronomy10091240

De Jong, M., Mariani, C., Vriezen, W. H., 2009. The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botani, 60(5), pp. 1523–32. https://doi.org/10.1093/jxb/erp094

Diwan, G., Chandola, J. Ch., Shiurkar, G., Lal, N., 2022. Potential role of plant growth regulators on horticultural crops. Scientist, 1(3), pp. 3202–3216. https://doi.org/10.5281/zenodo.7336714

Dong, C., Wang, G.G., Du, M., Niu, C., Zhang, P., Zhang, X., Ma, D., Ma, F., Bao, Z., 2020. Biostimulants promote plant vigor of tomato and strawberry after transplanting. Scientia Horticulturae, 267, p. 109355. https://doi.org/10.1016/j.scienta.2020.109355

Drobek, M., Fr?c, M., Cybulska, J., 2019. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy, 9, p. 335. https://doi.org/10.3390/agronomy9060335

du Jardin, P., 2015. Plant biostimulants: Definition, concept, main categories, and regulation. Scientia Horticulturae, 196, pp. 3–14. https://doi.org/10.1016/j.scienta.2015.09.021

Garruña-Hernández, R., Orellana, R., Larque-Saavedra, A., Canto, A., 2014. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature. PLoS ONE, 9, p. e111402. https://doi.org/10.1371/journal.pone.011140

Gupta, R., Chakrabarty, S. K., 2013. Gibberellic acid in plant: Still a mystery unresolved. Plant Signaling and Behavior, 8(9), p. e25504. https://doi.org/10.4161/psb.25504

Hernández?Pérez, T., Gómez?García, M.D.R., Valverde, M.E. and Paredes?López, O., 2020. Capsicum annuum (hot pepper): An ancient Latin?American crop with outstanding bioactive compounds and nutraceutical potential. A review. Comprehensive Reviews in Food Science and Food Safety, 19(6), pp. 2972–2993. https://doi.org/10.1111/1541-4337.12634

Kumar, A., Biswas, T. K., Singh, N., Lal, E.P., 2014. Effect of Gibberellic Acid on Growth, Quality and Yield of Tomato (Lycopersicon esculentum Mill.). Journal of Agriculture and Veterinary Science, 7(7), pp. 28–30. https://doi.org/10.6084/M9.FIGSHARE.1226390

López, C. L., Garruña Hernández, R., Castillo Aguilar, C. D., Martínez-Hernández, A., Ortiz García, M. M., & Andueza-Noh, R. H., 2019. Structure and genetic diversity of nine important landraces of Capsicum species cultivated in the Yucatan Peninsula, México. Agronomy, 9(7), p. 376. https://doi.org/10.3390/agronomy9070376

Maboko, M. M., Du Plooy, C. P., 2015. Effect of plant growth regulators on growth, yield, and quality of sweet pepper plants grown hydroponically. HortScience, 50(3), pp. 383–386. https://doi.org/10.21273/hortsci.50.3.383

Naga, B. L., Deepanshu, Singh, D., Bahadur, V., 2022. Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annuum L.). The Pharma Innovation Journal, 11(10), pp. 227–233.

Ngoroyemoto, N., Gupta, S., Kulkarni, M. G., Finnie, J. F., Van Staden, J., 2019. Effect of organic biostimulants on the growth and biochemical composition of Amaranthus hybridus L. South African. Journal of Botany, 124, pp. 87–93. https://doi.org/10.1016/j.sajb.2019.03.040

Noxolo, P. M., Fotouo-M, H., Maboko, M. M., Sivakumar, D., 2020. Stomatal conductance, leaf chlorophyll content, growth, and yield of sweet pepper in response to plant growth regulators. International Journal of Vegetable Science, 26 (2), pp. 116–126. https://doi.org/10.1080/19315260.2019.1610925

Peng, X., Zhao, W., Wang, Y., Dai, K., Cen, Y., Liu, Z., Zheng, Y., 2020. Enhancement of gibberellic acid production from Fusarium fujikuroi by mutation breeding and glycerol addition. Biotechnology, 10(312), pp. 1–10. https://doi.org/10.1007/s13205-020-02303-4

Peñuela, M., Arias, L.L., Viáfara-Vega, R., Rivera Franco, N. and Cárdenas, H., 2021. Morphological and molecular description of three commercial Capsicum varieties: a look at the correlation of traits and genetic distancing. Genetic Resources and Crop Evolution, 68(1), pp. 261–277. https://doi.org/10.1007/s10722-020-00983-8

Pichardo-González, J. M., Guevara-Olvera, L., Couoh-Uicab, Y. L., González-Cruz, L., Bernardino-Nicanor, A., Medina, H. R., González-Chavira, M. M., Acosta-García G., 2018. Efecto de las giberelinas en el rendimiento de chile jalapeño (Capsicum annuum L.). Revista Mexicana de Ciencias Agrícolas, 9(5), pp. 925-934. https://doi.org/10.29312/remexca.v9i5.1502

Renaut, S., Masse, J. P. N, Blal, B. and Hijri, M., 2019. A commercial seaweed extracts structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Microbial Biotechnology, 12, pp. 1346–1358. https://doi.org/10.1111/1751-7915.13473

Ruiz-Sánchez, E., Chan-Escalante, Z. F., Ballina-Gómez, H. S., Fernández-Herrera, M. A., Góngora-Gamboa, C. de J., 2022. Efecto de bioestimulantes en el crecimiento, características foliares y densidad poblacional de Bemisia tabaci en chile habanero (Capsicum chinense Jacq.). Tropical and Subtropical Agroecosystems, 25, pp.1–6. https://doi.org/10.56369/tsaes.3757

Serna, A., Hurtado-Salazar, A., Ceballos-Aguirre, N., 2017. Efecto del ácido giberélico en el crecimiento, rendimiento y calidad del tomate bajo condiciones controladas. Temas Agrarios, 22(2), pp. 70–79.

Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N., Petropoulos, S. A., 2021. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 11, p. 819. https:// doi.org/10.3390/biom110608

Silvana, L.C., Maria, F.S., Andrea, Y.M., Maria, J.I., 2019.Chitosan microparticles improve tomato seedling biomass and modulate hormonal, redox and defense pathways. Journal Plant Physiolgy, 143, pp. 203–211. https://doi.org/10.1016/j.plaphy.2019.09.002

Tian, H., Xu, Y., Liu, S., Jin, D., Zhang, J., Duan, L., Tan, W., 2017. Synthesis of gibberellic acid derivatives and their effects on plant growth. Molecules, 22(5), pp. 2–11. https://doi.org/10.3390/molecules22050694

Zulfiqar, F., Casadesús, A., Brockman, H., Munné-Bosch, S., 2019. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, p. 110194. https://doi.org/10.1016/j.plantsci.2019.110194




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.53546

DOI: http://dx.doi.org/10.56369/tsaes.5354



Copyright (c) 2025 Ana Lilia Ruiz Jiménez, Fátima del R. Yam-Herrera, Joaquín Sergio López-Vázquez, Juan Díaz-Mayo, Luis Latournerie-Moreno, Rene Garruña-Hernández

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.