Effect of foliar application of stimulants on the growth, physiology and fruit yield of X'catik chili pepper (Capsicum annuum L.)]
Abstract
Keywords
Full Text:
PDFReferences
Basulto, F.S. and León, M.J.Z., 2021. Estados de maduración de frutos de chile Xcat ik (Capsicum annuum L) y su relación con el periodo de almacenamiento en la germinación de las semillas. Brazilian Journal of Animal and Environmental Research, 4(3), pp. 4674–4683. https://doi.org/10.34188/bjaerv4n3-145
Bertolino, L.T., Caine, R.S., Gray, J. E., 2019. Impact of stomatal density and morphology on water-use efficiency in a Changing World. Frontiers in Plant Science, 10, p. 225. https://doi.org/10.3389/fpls.2019.00225
Binenbaum, J., Weinstain, R., Shani, E., 2018. Gibberellin localization and transport in plants. Trends in Plant Science, 23(5), pp. 410–421. https://doi.org/10.1016/j.tplants.2018.02.005
Bulgari, R., Franzoni, G. and Ferrante, A., 2019. Biostimulants Application in horticultural crops under abiotic stress conditions. Agronomy, 9, p. 306. https://doi.org/10.3390/agronomy9060306
Caruso, G., De Pascale, S., Cozzolino, E., Cuciniello, A., Cenvinzo, V., Bonini, P., Rouphael, Y., 2019. Yield and nutritional quality of vesuvian piennolo tomato PDO as affected by farming system and biostimulant. Application Agronomy, 9, p. 505. https://doi.org/10.3390/agronomy9090505
Castillo-Aguilar, C. C., Castilla, L. L., Pacheco, N., Cuevas-Bernardino, J. C., Garruña, R, R., Andueza-Noh, R. H., 2021. Phenotypic diversity and capsaicinoid content of chilli pepper landraces (Capsicum spp.) from the Yucatan Peninsula. Plant Genetic Resources, 19(2), pp. 159–166. https://doi.org/10.1017/S1479262121000204
Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R. and Rouphael, Y., 2017. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science, 8, p. 2202. https://doi.org/10.3389/fpls.2017.02202
Colla, G., Rouphael, Y., 2020. Editorial: Microalgae: New Source of Plant Biostimulants. Agronomy, 10, p. 1240. https://doi.org/10.3390/agronomy10091240
De Jong, M., Mariani, C., Vriezen, W. H., 2009. The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botani, 60(5), pp. 1523–32. https://doi.org/10.1093/jxb/erp094
Diwan, G., Chandola, J. Ch., Shiurkar, G., Lal, N., 2022. Potential role of plant growth regulators on horticultural crops. Scientist, 1(3), pp. 3202–3216. https://doi.org/10.5281/zenodo.7336714
Dong, C., Wang, G.G., Du, M., Niu, C., Zhang, P., Zhang, X., Ma, D., Ma, F., Bao, Z., 2020. Biostimulants promote plant vigor of tomato and strawberry after transplanting. Scientia Horticulturae, 267, p. 109355. https://doi.org/10.1016/j.scienta.2020.109355
Drobek, M., Fr?c, M., Cybulska, J., 2019. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy, 9, p. 335. https://doi.org/10.3390/agronomy9060335
du Jardin, P., 2015. Plant biostimulants: Definition, concept, main categories, and regulation. Scientia Horticulturae, 196, pp. 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
Garruña-Hernández, R., Orellana, R., Larque-Saavedra, A., Canto, A., 2014. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature. PLoS ONE, 9, p. e111402. https://doi.org/10.1371/journal.pone.011140
Gupta, R., Chakrabarty, S. K., 2013. Gibberellic acid in plant: Still a mystery unresolved. Plant Signaling and Behavior, 8(9), p. e25504. https://doi.org/10.4161/psb.25504
Hernández?Pérez, T., Gómez?García, M.D.R., Valverde, M.E. and Paredes?López, O., 2020. Capsicum annuum (hot pepper): An ancient Latin?American crop with outstanding bioactive compounds and nutraceutical potential. A review. Comprehensive Reviews in Food Science and Food Safety, 19(6), pp. 2972–2993. https://doi.org/10.1111/1541-4337.12634
Kumar, A., Biswas, T. K., Singh, N., Lal, E.P., 2014. Effect of Gibberellic Acid on Growth, Quality and Yield of Tomato (Lycopersicon esculentum Mill.). Journal of Agriculture and Veterinary Science, 7(7), pp. 28–30. https://doi.org/10.6084/M9.FIGSHARE.1226390
López, C. L., Garruña Hernández, R., Castillo Aguilar, C. D., Martínez-Hernández, A., Ortiz García, M. M., & Andueza-Noh, R. H., 2019. Structure and genetic diversity of nine important landraces of Capsicum species cultivated in the Yucatan Peninsula, México. Agronomy, 9(7), p. 376. https://doi.org/10.3390/agronomy9070376
Maboko, M. M., Du Plooy, C. P., 2015. Effect of plant growth regulators on growth, yield, and quality of sweet pepper plants grown hydroponically. HortScience, 50(3), pp. 383–386. https://doi.org/10.21273/hortsci.50.3.383
Naga, B. L., Deepanshu, Singh, D., Bahadur, V., 2022. Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annuum L.). The Pharma Innovation Journal, 11(10), pp. 227–233.
Ngoroyemoto, N., Gupta, S., Kulkarni, M. G., Finnie, J. F., Van Staden, J., 2019. Effect of organic biostimulants on the growth and biochemical composition of Amaranthus hybridus L. South African. Journal of Botany, 124, pp. 87–93. https://doi.org/10.1016/j.sajb.2019.03.040
Noxolo, P. M., Fotouo-M, H., Maboko, M. M., Sivakumar, D., 2020. Stomatal conductance, leaf chlorophyll content, growth, and yield of sweet pepper in response to plant growth regulators. International Journal of Vegetable Science, 26 (2), pp. 116–126. https://doi.org/10.1080/19315260.2019.1610925
Peng, X., Zhao, W., Wang, Y., Dai, K., Cen, Y., Liu, Z., Zheng, Y., 2020. Enhancement of gibberellic acid production from Fusarium fujikuroi by mutation breeding and glycerol addition. Biotechnology, 10(312), pp. 1–10. https://doi.org/10.1007/s13205-020-02303-4
Peñuela, M., Arias, L.L., Viáfara-Vega, R., Rivera Franco, N. and Cárdenas, H., 2021. Morphological and molecular description of three commercial Capsicum varieties: a look at the correlation of traits and genetic distancing. Genetic Resources and Crop Evolution, 68(1), pp. 261–277. https://doi.org/10.1007/s10722-020-00983-8
Pichardo-González, J. M., Guevara-Olvera, L., Couoh-Uicab, Y. L., González-Cruz, L., Bernardino-Nicanor, A., Medina, H. R., González-Chavira, M. M., Acosta-García G., 2018. Efecto de las giberelinas en el rendimiento de chile jalapeño (Capsicum annuum L.). Revista Mexicana de Ciencias Agrícolas, 9(5), pp. 925-934. https://doi.org/10.29312/remexca.v9i5.1502
Renaut, S., Masse, J. P. N, Blal, B. and Hijri, M., 2019. A commercial seaweed extracts structured microbial communities associated with tomato and pepper roots and significantly increased crop yield. Microbial Biotechnology, 12, pp. 1346–1358. https://doi.org/10.1111/1751-7915.13473
Ruiz-Sánchez, E., Chan-Escalante, Z. F., Ballina-Gómez, H. S., Fernández-Herrera, M. A., Góngora-Gamboa, C. de J., 2022. Efecto de bioestimulantes en el crecimiento, características foliares y densidad poblacional de Bemisia tabaci en chile habanero (Capsicum chinense Jacq.). Tropical and Subtropical Agroecosystems, 25, pp.1–6. https://doi.org/10.56369/tsaes.3757
Serna, A., Hurtado-Salazar, A., Ceballos-Aguirre, N., 2017. Efecto del ácido giberélico en el crecimiento, rendimiento y calidad del tomate bajo condiciones controladas. Temas Agrarios, 22(2), pp. 70–79.
Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N., Petropoulos, S. A., 2021. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 11, p. 819. https:// doi.org/10.3390/biom110608
Silvana, L.C., Maria, F.S., Andrea, Y.M., Maria, J.I., 2019.Chitosan microparticles improve tomato seedling biomass and modulate hormonal, redox and defense pathways. Journal Plant Physiolgy, 143, pp. 203–211. https://doi.org/10.1016/j.plaphy.2019.09.002
Tian, H., Xu, Y., Liu, S., Jin, D., Zhang, J., Duan, L., Tan, W., 2017. Synthesis of gibberellic acid derivatives and their effects on plant growth. Molecules, 22(5), pp. 2–11. https://doi.org/10.3390/molecules22050694
Zulfiqar, F., Casadesús, A., Brockman, H., Munné-Bosch, S., 2019. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, p. 110194. https://doi.org/10.1016/j.plantsci.2019.110194
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.53546
DOI: http://dx.doi.org/10.56369/tsaes.5354
Copyright (c) 2025 Ana Lilia Ruiz Jiménez, Fátima del R. Yam-Herrera, Joaquín Sergio López-Vázquez, Juan Díaz-Mayo, Luis Latournerie-Moreno, Rene Garruña-Hernández

This work is licensed under a Creative Commons Attribution 4.0 International License.