Blast disease associated with grass weeds in rice production systems of Paraguay

Karina Morinigo-Gimenez, Alfredo Urashima, Alice Chavez, Marta Alicia Fernández-Gamarra, Liliana Talavera-Stefani, Rocio Duarte, Cinthia Carolina Cazal-Martínez, Lidia Quintana

Abstract


Background: Several fungal species within the genus Pyricularia are associated with blast diseases affecting Poaceae crops, including wheat, rice, oat, barley, triticale, and various grass weeds. Among these, Pyricularia oryzae is recognized as a major pathogen due to its significant impact on cereal production worldwide. The fungus can survive on weed hosts, potentially serving as inoculum reservoirs. Objective: To characterize grass weed species acting as alternative hosts for Pyricularia spp. in rice agroecosystems in Paraguay. Methodology: During the 2020/2021 rice season, symptomatic weed samples exhibiting elongated or elliptical lesions with reddish-brown margins and lighter centers were collected across major rice-producing regions. Samples were processed at the Microbiology and Biotechnology laboratories of the Facultad de Ciencias y Tecnología, Universidad Nacional de Itapúa, and the Instituto Paraguayo de Tecnología Agraria (IPTA). Results: Morphological characterization of isolates cultured on oat agar revealed grayish to dark-gray colonies, with conidia hyaline, pyriform to obclavate, and containing two transverse septa. Molecular identification based on ITS region sequencing confirmed isolates from Cynodon dactylon as Pyricularia grisea (99.8% similarity) and from Echinochloa sp. as Pyricularia oryzae (100% similarity). Pathogenicity assays in rice seedlings (cv. IRGA 424) reproduced typical blast symptoms for the rice-derived isolate, whereas the Cynodon dactylon- and Echinochloa-derived isolates elicited differential reactions, including hypersensitive, incompatible, and mild blast-like symptoms. Implications: These findings underscore the epidemiological role of grass weeds as alternative hosts and potential inoculum reservoirs of Pyricularia spp., emphasizing the need to integrate weed monitoring and management into comprehensive blast disease control strategies in rice cultivation systems. Conclusion: Grass weed species present in rice agroecosystems of Paraguay were identified as reservoirs for Pyricularia spp., highlighting their potential role in pathogen survival and dissemination within rice fields.

Keywords


Alternative hosts; Inoculum reservoirs; blast rice disease

Full Text:

PDF

References


Asibi, A.E., Chai, Q. and Coulter, J.A., 2019. Rice blast: A disease with implications for global food security. Agronomy, 9 (8), p. 451. https://doi.org/10.3390/agronomy9080451

Asuke, S., Tanaka, M., Hyon, G.S., Inoue, Y., Vy, T.T.P., Niwamoto, D., Nakayashiki, H. and Tosa, Y., 2020. Evolution of an eleusine-specific subgroup of Pyricularia oryzae through a gain of an avirulence gene. Molecular Plant-Microbe Interactions, 33, pp. 153–165. https://doi.org/10.1094/MPMI-03-19-0083-R

Bastida, L.M., Gutierrez, S.A. and Carmona, M.A., 2019. Isolamento e caracterização sintomática de Pyricularia spp. em arroz e outros hospedeiros na província de Corrientes (Argentina). Summa Phytopathologica, 45, pp. 200–203. https://doi.org/10.1590/0100-5405/190957

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T. and Wu, C.-H., 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, p. e1003537. https://doi.org/10.1371/journal.pcbi.1003537

Cazal-Martínez, C.C., Reyes-Caballero, Y.M., Chávez, A.R., Pérez-Estigarribia, P.E., Kohli, M.M., Rojas, A., Arrua, A.A., Moura-Mendes, J., Souza-Perera, R., Zúñiga Agilar, J.J., Gluck-Thaler, E., Lopez-Nicora, H. and Iehisa, J.C.M., 2025. Pyricularia pennisetigena and Pyricularia oryzae isolates from Paraguay’s wheat-growing regions and the impact on wheat. Current Research in Microbial Sciences, 8, p. 100361. https://doi.org/10.1016/j.crmicr.2025.100361

Chávez, A. and Kohli, M.M., 2015. Alternative hosts of Magnaporthe grisea of wheat in Paraguay. Investigación Agraria, 17, pp. 54–59. http://dx.doi.org/10.18004/investig.agrar.2015.junio.54-59

Chávez, A.R., Tellez, L.C., Cazal-Martinez, C.C., Kohli, M.M. and Carmona, M.A., 2022. Further progress on wheat blast epidemiology: Identification of novel alternate hosts of Magnaporthe oryzae Triticum pathotype in Paraguay. European Journal of Plant Pathology. https://doi.org/10.1007/s10658-022-02567-x

Chung, H., Goh, J., Han, S. S., Roh, J.H., Kim, Y., Heu, S., Shim, H.K., Jeong, D.G., Kang, I.J. and Yang, J.W., 2020. Comparative pathogenicity and host ranges of Magnaporthe oryzae and related species. Plant Pathology Journal, 36, pp. 305–313. https://doi.org/10.5423/PPJ.FT.04.2020.0068

Couch, B.C. and Kohn, L.M., 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 94 (4), pp. 683–693. https://doi.org/10.1080/15572536.2003.11833196

Couch, B.C., Fudal, I., Lebrun, M.H., Tharreau, D., Valent, B., Van Kim, P., Nottéghem, J.L. and Kohn, L.M., 2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics, 170, pp. 613–630. https://doi.org/10.1534/genetics.105.041780

Del Ponte, E.M., 2023. R for Plant Disease Epidemiology (R4PDE). Available at: https://r4pde.net

Diagne, D., Adreit, H., Milazzo, J., Koita, O. and Tharreau, D., 2025. Population structure and pathogenicity tests of Pyricularia oryzae on wild and cultivated rice in Mali. Plant Pathology 74, pp. 536–547. https://doi.org/10.1111/ppa.14038

FAO, Food and Agriculture Organization., 2009. FAO’s Director-General on how to feed the world in 2050. Population and Development Review 35, pp. 837–839. JSTOR, http://www.jstor.org/stable/25593700. Accessed 10 jul. 2025.

FAO, Food and Agriculture Organization., 2021. Food Outlook: On Cereal Supply and Demand – 2020. Rome. https://www.fao.org/publications/es

FAO, Food and Agriculture Organization., 2025. Food outlook: supply and demand of cereals – 2024. Rome. www.fao.org/publications/es (accessed Jul 10, 2025)

Farman, M.L., 2007. Pyricularia grisea isolates causing gray leaf spot on perennial ryegrass (Lolium perenne) in the United States: Relationship to P. grisea isolates from other host plants. Phytopathology 92, pp. 245–254. https://doi.org/10.1094/PHYTO.2002.92.3.245

Frandsen, P.B., Calcott, B., Mayer, C. and Lanfear, R., 2015. Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evolutionary Biology 15, pp. 1–17. https://doi.org/10.1186/S12862-015-0283-7/TABLES/4

French, E.R. and Hebert, T.T., 1980. Phytopathological Research Methods. Biblioteca Orton IICA / CATIE

Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J.L.N., Nhani, A., Chen, L., Terauchi, R., Lebrun, M.-H., Tharreau, D., Mitchell, T., Pedley, K.F., Valent, B., Talbot, N.J., Farman, M. and Fournier, E., 2018. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9, p. e01219-17. https://doi.org/10.1128/mBio.01219-17

Gowrisri, N., Kamalakannan, A., Malathi, V.G., Rajendran, L. and Rajesh, S., 2019. Morphological and molecular characterization of Magnaporthe oryzae B. Couch, inciting agent of rice blast disease. Madras Agricultural Journal. https://doi.org/10.29321/MAJ2019.000256

Gutiérrez, S.A. and Cúndom, M.A., 2015. Pyricularia oryzae affecting barley crops in Corrientes (Argentina). Summa Phytopathologica 41, pp. 318–320. https://doi.org/10.1590/0100-5405/2063

Huelsenbeck, J.P. and Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics Applications Note 17, pp. 754–755.

Hyon, G.S., Nga, N.T.T., Chuma, I., Inoue, Y., Asano, H., Murata, N., Kusaba, M. and Tosa, Y., 2012. Characterization of interactions between barley and various host-specific subgroups of Magnaporthe oryzae and M. grisea. Journal of General Plant Pathology, 78, pp. 237–246. https://doi.org/10.1007/s10327-012-0386-6

Igarashi, S., Utiamada, C.M., Kasuma, A.H. and López, R.S., 1986. Pyricularia sp. in wheat. 1. Ocurrence of Pyricularia sp. In the State of Paraná. Fitopatología Brasilera, 11, pp. 351–352.

Inoue, Y., Vy, T.T.P., Tani, D. and Tosa, Y., 2021. Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat. New Phytologist, 229, pp. 488–500. https://doi.org/10.1111/nph.16894

Inoue, Y., Vy, T.T.P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., Anh, V.L., Cumagun, C.J.R., Chuma, I., Terauchi, R., Kato, K., Mitchell, T., Valent, B., Farman, M. and Tosa, Y., 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357, pp. 80–83. https://doi.org/10.1126/science.aam9654

IRRI., 2013. Standard Evaluation System for Rice, 5th ed. Los Baños, Philippines: International Rice Research Institute. http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf

Islam, M. T., Kim, K. and Choi, J., 2019. Wheat blast in Bangladesh: the current situation and future impacts. The Plant Pathology Journal 35(1), pp. 1-10. https://doi.org/10.5423/PPJ.RW.08.2018.0168

Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., Tosa, Y., Mayama, S. and Mori, N., 2000. Pathogenicity, mating ability, and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. Journal of General Plant Pathology, 66, pp. 30–47. https://doi.org/10.1007/PL00012919

Katoh, K., Misawa, K., Kuma, K.I. and Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, p 3059. https://doi.org/10.1093/NAR/GKF436

Katoh, K., Rozewicki, J. and Yamada, K., 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20. https://doi.org/10.1093/bib/bbx108

Katoh, K. and Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, p. 772. https://doi.org/10.1093/MOLBEV/MST010

Klaubauf, S., Tharreau, D., Fournier, E., Groenewald, J.Z., Crous, P.W., de Vries, R.P. and Lebrun, M.-H., 2014. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in Mycology, 79, pp. 85–120. https://doi.org/10.1016/j.simyco.2014.09.004

Kobayashi, N., Dang, T.A., Pham, K.T.M., Gómez Luciano, L.B., Van Vu, B., Izumitsu, K., Shimizu, M., Ikeda, K. I., Li, W.H. and Nakayashiki, H., 2023. Horizontally transferred DNA in the genome of the fungus Pyricularia oryzae is associated with repressive histone modifications. Molecular Biology and Evolution, 40. https://doi.org/10.1093/molbev/msad186

Lanfear, R., Calcott, B., Kainer, D., Mayer, C. and Stamatakis, A., 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology 14, p. 82. https://doi.org/10.1186/1471-2148-14-82

Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. and Calcott, B., 2017. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, pp. 772–773. https://doi.org/10.1093/molbev/msw260

Latorre, S.M., Reyes-Avila, C.S., Malmgren, A., Win, J., Kamoun, S. and Burbano, H.A., 2020. Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus. BMC Biology 18, pp. 1–15. https://doi.org/10.1186/s12915-020-00818-z

Mohanty, S., Wassmann, R., Nelson, A., Moya, P. and Jagadish, S.V K., 2013. Rice and climate change: significance for food security and vulnerability. In IRRI Discussion. Los Baños (Philippines): International Rice Research Institute, Vol. Series No. 49 (IRRI Discussion, pp. 1–18. www.ccafs.cgiar.org.

Müller, K., Quandt, D., Müller, J. and Neinhuis, C., 2005. PhyDE® - Phylogenetic Data Editor Version 10.0.

Muthayya, S., Sugimoto, J.D., Montgomery, S. and Maberly, G.F., 2014. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences 1324, pp. 7–14. https://doi.org/10.1111/NYAS.12540

Perelló, A.E., Martinez, I., Sanabria, A., Altamirano, R. and Sibole, J.V., 2017. Pathogenicity of isolates of Magnaporthe spp. from wheat and grasses infecting seedlings and mature wheat plants in Argentina. Plant Pathology 66, pp. 1149–1161. https://doi.org/10.1111/PPA.12658

Qi, H., Yang, J., Yin, C., Zhao, J., Ren, X., Jia, S. and Zhang, G., 2019. Analysis of Pyricularia oryzae and P. grisea from different hosts based on multilocus phylogeny and pathogenicity associated with host preference in China. Phytopathology, 109, pp. 1433–1440. https://doi.org/10.1094/PHYTO-10-18-0383-R

Quintana, L., Gutiérrez, S., Arriola, M., Maidana, M., Ortiz, A., Vigo, R., Sotomayor, N., Bertoni, F. and Barúa, M., 2020. Final Technical Report: Epidemiological knowledge of parasitic diseases affecting rice cultivation in Paraguay (14-INV-111). Encarnacion, Paraguay.

Rambaut, A., Suchard, M.A., Xie, D. and Drummond, A.J., 2014. Tracer v1.6. Available at: http://beast.community/tracer.

Ramírez, J., Hoyos, V. and Plaza, G., 2017. Weed population dynamics in rice crops resulting from post-emergent herbicide applications. Revista Facultad Nacional de Agronomía Medellín 70, pp. 8035–8043. https://doi.org/10.15446/RFNA.V70N1.61762

Rebolledo-Cid, M.C., Ramírez-Villegas, J., Graterol-Matute, E., Hernández-Varela, C.A., Rodríguez-Espinoza, J., Petro-Paez, E.E., Pinzón, S., Heinemann, A.B., Rodríguez-Baide, M.J. and Van Den Berg, M., 2018. Rice modeling in Latin America. European Commission Joint Research Centre. https://ec.europa.eu/jrc (accessed Jul, 10 2025).

Sambrook, J., Fritsch, E.F. and Maniatis, T., 1990. Molecular Cloning, A Laboratory Manual 2nd edn. John Wiley and Sons, Ltd, New York. https://doi.org/https://doi.org/10.1002/jobm.3620300824

Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, pp. 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Thierry, M., Charriat, F., Milazzo, J., Adreit, H., Ravel, S., Cros-Arteil, S., Borron, S., Sella, V., Kroj, T., Ioos, R., Fournier, E., Tharreau, D. and Gladieux, P., 2022. Maintenance of divergent lineages of the rice blast fungus Pyricularia oryzae through niche separation, loss of sex, and post-mating genetic incompatibilities. PLoS Pathogens 18, p. e1010687. https://doi.org/10.1371/journal.ppat.1010687

Tosa, Y. and Chuma, I., 2014. Classification and parasitic specialization of blast fungi. Journal of General Plant Pathology 80, pp., 202–209. https://doi.org/10.1007/s10327-014-0513-7

USDA-FAS., 2024. Rice: Paraguay country summary. Area, yield, and production. Available at: https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=PA&crop=Rice (accessed Jul,10 2025).

Valent, B., Farrall, L. and Chumley, F.G., 1991. Genes for pathogenicity and virulence through a series of backcrosses. Genetics, 127, pp. 87–101.

Vigo, R. and Sotomayor, N., 2016 Grass weeds as hosts of fungi associated with rice in rice-producing regions. M.Sc. thesis, Facultad de Ciencias Agropecuarias y Forestales, Universidad Nacional de Itapúa, Encarnación, Paraguay.

Wang, X., Wu, W., Zhang, Y., Li, C., Wang, J., Wen, J., Zhang, S., Yao, Y., Lu, W. and Zhao, Z., 2023. The lesson learned from the unique evolutionary story of avirulence gene AvrPii of Magnaporthe oryzae. Genes, 14, p. 1065. https://doi.org/10.3390/genes14051065

Yoshida, K., Saunders, D.G.O., Mitsuoka, C., Natsume, S., Kosugi, S., Saitoh, H., Inoue, Y., Chuma, I., Tosa, Y., Cano, L.M. and Kamoun, S., 2016. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics, 17, p. 370. https://doi.org/10.1186/s12864-016-2690-6




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.65859

DOI: http://dx.doi.org/10.56369/tsaes.6585



Copyright (c) 2025 Alfredo Urashima, Beatriz Karina Morinigo Giménez, Cintia Cazal Martínez, Alicia Chávez, Liliana Talavera, Rocío Duarte, Marta Fernández Gamarra, Lidia Quintana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.