Efficacy of entomopathogenic fungal filters additioned with silicon nanoparticles on the mortality of Tetranychus urticae Koch (Acari: Tetranychidae)

Lisett Romero Pavón, Ernesto Cerna Chávez, Yisa María Ochoa Fuentes, Saúl Enrique Uribe Rivera

Abstract


Background: Tetranychus urticae is considered a very destructive pest, resistance has been documented due to poor management of agrochemicals, which has motivated interest in developing acaricides with alternative modes of action to mitigate this problem. Entomopathogen filtrates have insecticidal properties, deactivating several immune mechanisms that allow them to overcome and then kill the host. On the other hand, due to its shape, size and porosity, silica can act as an excellent nanocarrier for the administration of biopesticides. Objective: To evaluate the acaricidal activity of Beauveria bassiana and Metarhizium anisopliae filtrates alone and in combination with silicon nanoparticles for the control of T. urticae associated with rose crops. Methodology: The leaf immersion method was used, a mortality correction was made using the Henderson and Tilton formula, the results obtained were subjected to a Probit Analysis, to obtain the concentration-mortality response curve and thus obtain the LC50. Results: The Beauveria + Nps-Si treatment showed greater effectiveness in controlling T. urticae by presenting the lowest LC50, followed by Metarhizium + Nps-Si. Conclusions: The filtrate treatments of B. bassiana and M. anisopliae are effective in controlling T. urticae, but when combined with NPs-Si their effectiveness increases considerably.

Keywords


mites; Beauveria; Metarhizium; nanoparticles; resistance; silicon.

Full Text:

PDF

References


Albehadli, K. and Mohmed, S.A., 2022. Laboratory evaluation of the aphidicidal activity of some entomopathogenic fungal culture filtrate against aphid Schizaphis graminum. AIP Conference Proceedings, 2398(1), pp. 040020. https://doi.org/10.1063/5.0093653

Alkhaibari, A.M., Carolino, A.T., Yavasoglu, S.I., Maffeis, T., Mattoso, T.C., Bull, J.C., Samuels, R.I. and Butt, T.M., 2016. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: attack on several fronts accelerates mortality. PLoS Pathogens, 12(7), pp. e1005715. https://doi.org/10.1371/journal.ppat.1005715

Basak, R., Akter, M., Tumpa, T.A., Sharmin, D. and Ullah, M.S., 2021. Laboratory bioassay of six pesticides, an entomopathogenic fungus, and a botanical pesticide on two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Persian Journal of Acarology, 10(3), pp. 269-280. https://doi.org/10.22073/pja.v10i3.65092

Cáceres, M., Vassena, V.C., Garcerá, M.D. and Santo, O.P.L., 2019. Silica nanoparticles for insect pest control. Current Pharmaceutical Design, 25(37), pp. 4030-4038. https://doi.org/10.2174/1381612825666191015152855

Castagnola, A. and Jurat, F.J.L., 2016. Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. Current. Opinion in Insect Science, 15, pp. 104-110. https://doi.org/10.1016/j.cois.2016.04.008

Dubovskiy, M.I., Grizanova, V.E., Tereshchenko, D., Krytsyna, I.T., Alikina, T., Kalmykova, G., Kabilov, M. and Coates, J.C., 2021. Bacillus thuringiensis spores and Cry3A toxins act synergistically to expedite colorado potato beetle mortality. Toxins, 13(11), pp. 746. https://doi.org/10.3390/toxins13110746

Emami, S., Aramideh, S., Pirsa, S. and Michavd, J., 2021. Lethal effects of fungi Beauveria bassiana (Bals.) and nanosilica on cabbage aphid Brevicoryne brassicae (L.) and its parasitoid Diaeretiella rapae (McIntosh) in laboratory conditions. Journal of Iranian Plant Protection Research, 35(3), pp. 333-345. https://doi.org/10.22067/jpp.2021.70807.1030

Finney, D.J., 1971. Probit analysis. Cambridge at the Univ. Press. 3rd. Ed., pp. 120. https://doi.org/10.1002/jps.2600600940

Fröhlich, E.E. and Fröhlich, E., 2016. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. International Journal Molecular Sciences, 17(4), pp. 509. https://doi.org/10.3390/ijms17040509

Gayathri, M., 2023. Nano particles influence on the production and multiplication of bio pesticide, Beauveria bassiana (Balsamo) Vuillemin. The Pharma Innovation Journal, 12(5), pp. 2908-2915. https://www.thepharmajournal.com/archives/2023/vol12issue5/PartAI/12-4-394-211.pdf

Gustianingtyas, M., Herlinda, S., Suwandi, Suparman, Hamidson, H., Hasbi, Setiawan, A., Verawaty, M., Elfita, and Arsi, 2020. Toxicity of entomopathogenic fungal culture filtrate of lowland and highland soil of South Sumatra (Indonesia) against Spodoptera litura larvae. Biodiversitas Journal of Biological Diversity, 21(5), pp. 1839-1849. https://doi.org/10.13057/biodiv/d210510

Hanan, A., Nazir, T., Basit, A., Ahmad, S. and Qiu, D., 2020. Potential of Lecanicillium lecanii (Zimm.) as a microbial control agent for green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Journal Zool, 52(1), pp. 131-137. https://dx.doi.org/10.17582/journal.pjz/2020.52.1.1.131.137

Henderson, C.F. and Tilton, E.W., 1955. Test with acaricides against the brown wheat mite. Journal Economic Entomology, 48(2), pp. 157-161. https://doi.org/10.1093/jee/48.2.157

Herlinda, S., Efendi, R.A., Suharjo, R., Hasbi, Setiawan, A., Elfita, and Verawaty, M., 2020. New emerging entomopathogenic fungi isolated from soil in south Sumatra (Indonesia) and their filtrate and conidial insecticidal activity against Spodoptera litura. Journal of Biological Diversity, 21(11), pp. 5102-5113. https://doi.org/10.13057/biodiv/d211115

Hersanti, L.D., Yusup, H., Levaldo, S.P. and Made, J., 2020. The effectiveness of suspension of Beauveria bassiana mixed with silica nanoparticles (NPs.) and carbon fiber in controlling Spodoptera litura. AIP Conference Proceedings, 2219, pp. 080011. https://doi.org/10.1063/5.0003159

Hosseinzadeh, A., Kohrize, G.A. and Vahedi, K.S., 2022. Investigating the effect of silica nanoparticles combined with the pathogenic fungus Beauveria bassiana on the greenhouse whitefly Trialeurodes vaporariorum Westwood. Entomological Research, 13(3), pp. 177-195. https://www.magiran.com/p2463138

Mancillas-Paredes, J.M., Hernández-Sánchez, H., Jaramillo-Flores, M.E. and García-Gutiérrez, C., 2019. Proteases and chitinases induced in Beauveria bassiana during infection by Zabrotes subfasciatus. Southwestern Entomologist, 44(1), pp. 125-137. https://doi.org/10.3958/059.044.0114

Meteab, H.R., Kadhim, J.H., AL-Abedy, A.N. and AL-Musawi, B.H., 2022. Effect of some biological control fungi on life stages of the two-spot spider mite Tetranychus urticae Koch (Acari: Tetranchidaea) on eggplant. Earth and Environmental Science, 1060(1), pp. 012110. https://doi.org/10.1088/1755-1315/1060/1/012110

Namara, M.L., Carolan, J.C., Griffin, C.T., Fitzpatrick, D. and Kavanagh, K., 2017. The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella. Journal of Insect Physiology, 100, pp. 82-92. https://doi.org/10.1016/j.jinsphys.2017.05.009

Pal, S., Leger, R.J. St. and Wu, L.P., 2007. Fungal peptide destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster. Journal of Biological Chemistry, 282(12), pp. 8969-8977. https://doi.org/10.1074/jbc.M605927200

Paschapur, A., Subbanna, A.N.S., Singh, A.K., Jeevan, B., Stanley, J., Rajashekhar, H. and Mishra, K.K., 2021. Unraveling the importance of metabolites from entomopathogenic fungi in insect pest management. Microbes for Sustainable lnsect Pest Management, 17, pp. 89-120. https://doi.org/10.1007/978-3-030-67231-7_5

Pinnamaneni, R., Kalidas, P. and Sambasiva., 2010. Cloning and expression of Bbchit1 gene of Beauveria bassiana. The Open Entomology Journal, 4, pp. 30-35. https://doi.org/10.2174/1874407901004010030

Ríos, M.A.; Garrido, J.I., Raya, O.M.C. and Quesada, M.E., 2017. Quantification of fungal growth and destruxin A during infection of Galleria mellonella larvae by Metarhizium brunneum. Journal of Invertebrate Pathology, 149, pp. 29-35. https://pubmed.ncbi.nlm.nih.gov/28629882/

Sánchez, P.L.deC., Barranco, F.J., Rodríguez, N.S., Cervantes, M.J.F. and Ramos, L.M.A., 2014. Enzymes of entomopathogenic fungi, advances and insights. Advances in Enzyme Research, 2(2), pp. 65-76. http://dx.doi.org/10.4236/aer.2014.22007

Schrank, A. and Vainstein, M.H., 2010. Metarhizium anisopliae enzymes and toxins. Toxicon. 56(7), pp. 1267-1274. https://doi.org/10.1016/j.toxicon.2010.03.008

Shatalova, E.I., Grizanova, E.V. and Dubovskiy, I.M., 2022. The effect of silicon dioxide nanoparticles combined with entomopathogenic bacteria or fungus on the survival of colorado potato beetle and cabbage beetles. Journals Nanomaterials, 12(9), pp. 1558. https://doi.org/10.3390/nano12091558

Shin, T.Y., Bae, S.M., Kim, D.J., Yun, H.G., Woo, S.D., 2017. Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite, Tetranychus urticae. Mycoscience, 58(3), pp. 204-212. https://doi.org/10.1016/j.myc.2017.02.002

Yucel, C., 2021. Effects of local isolates of Beauveria bassiana (Balsamo) Vuillemin on the two-spotted spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae). Egyptian Journal of Biological Pest Control, 31(63), pp.63. https://doi.org/10.1186/s41938-021-00409-2




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.64748

DOI: http://dx.doi.org/10.56369/tsaes.6474



Copyright (c) 2025 Lisett Romero Pavón, Ernesto Cerna Chávez, Yisa María Ochoa Fuentes, Saúl Enrique Uribe Rivera

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.