Incidence of Lasiodiplodia theobromae on the dieback of ecuadorian cocoa: Nacional, CCN-51 and Trinitario

Angel Virgilio Cedeño-Moreira, Juan Antonio Torres Rodriguez, Ketty Vanessa Arellano-Ibarra, Mercedes Susana Carranza Patiño, Gerardo Zapata-Sifuentes, Pablo Preciado-Rangel

Abstract


Background: Cocoa production in Ecuador, the world leader in fine flavour cocoa, faces losses due to dieback caused by Lasiodiplodia theobromae. This phytopathogen affects the quality and yield of the crop. Currently, information on the susceptibility of the main Ecuadorian varieties to this disease remains limited. Objective: To evaluate the incidence of L. theobromae on dieback of Ecuadorian cocoa: Nacional, CCN-51, and Trinitario. Methodology: The study was carried out between April and August 2023 at the La María Experimental Campus located in the town of Mocache, Los Ríos province, Ecuador. The experiments were conducted using a completely randomised design with three treatments, five replicates and ten experimental units per treatment. Isolations of the fungus were made from infected ears of the CCN-51 variety, and were morphologically and molecularly characterised. In this study, mycelial growth rate, colony diameter (cm) and infection coverage on cocoa pods (cm) were evaluated. In addition, fungal growth was determined in three culture media (potato dextrose agar, corn meal agar, and malt extract agar) at 14, 28, and 40 °C. Results: It was observed that potato dextrose agar medium and temperature of 28 °C were optimal for fungal growth. Internal and external infection coverage on cobs showed that Nacional was the most susceptible variety, followed by CCN-51 and Trinitario. The highest spore density was found on the surface of the cobs of the CCN-51 variety. Implications: The results highlight the need to strengthen integrated disease management and consider varietal resistance in breeding programmes. Conclusions: The results of this study confirm the high incidence of L. theobromae in the evaluated cocoa varieties. The Nacional variety was the most susceptible, registering the highest internal and external infection coverage, as well as high seedling mortality.

Keywords


morphological characterization; genetic variability; fungal growth; infection cover; susceptibility; pathogenicity.

Full Text:

PDF

References


Ablormeti, F.K., Coleman, S.R., Honger, J.O., Owusu, E., Bedu, I., Aidoo, O.F., Cornelio, E.W. and Odamtten, G. T., 2021. Management of Lasiodiplodia theobromae, the causal agent of mango tree decline disease in Ghana. African Crop Science Journal, 29(2), pp. 193-207. https://dx.doi.org/10.4314/acsj.v29i2.2

Adebayo, S.T., Oyawole, F.P., Sanusi, R.A. and Afolami, C.A., 2022. Technology adoption among cocoa farmers in Nigeria: what drives farmers’ decisions. Forests, Trees and Livelihoods, 31(1), pp. 1-12. https://doi.org/10.1080/14728028.2021.2011789

Adu-Acheampong, R., Archer, S. and Leather, S., 2012. Resistance to dieback disease caused by Fusarium and Lasiodiplodia species in cacao (Theobroma cacao L.) genotypes. Experimental agricultura, 48(1), pp. 85-98. https://doi.org/10.1017/S0014479711000883

Ambele, C.F., Bisseleua, H.D., Djuideu, C.T. and Akutse, K.S., 2023. Managing insect services and disservices in cocoa agroforestry systems. Agroforestry Systems, 97, pp. 965-984. https://doi.org/10.1007/s10457-023-00839-x

Ascencio, J.J., Philippini, R.R., Gomes, F.M., Pereira, F.M., da Silva, S.S., Kumar, V. and Chandel, A.K., 2021. Comparative Highly Efficient Production of ?-glucan by Lasiodiplodia theobromae CCT 3966 and Its Multiscale Characterization. Fermentation, 7(3), Article 108. https://doi.org/10.3390/fermentation7030108

Ashtiani, SH.M., Aghkhani, M.H., Feizy, J. and Martynenko, A., 2023. Effect of cold plasma pretreatment coupled with osmotic dehydration on drying kinetics and quality of mushroom (Agaricus bisporus). Food and Bioprocess Technology, 16(12), pp. 2854–2876. https://doi.org/10.1007/s11947-023-03096-z

Asman, A., Iwanami, T. and Rosmana, A., 2024a. Effect of drought stress on dieback disease development under Lasiodiplodia theobromae infection in cocoa clone" MCC 02". Beverage Plant Research, 4, Article e034. https://doi.org/10.48130/bpr-0024-0023

Asman, A., Iwanami, T., Rosmana, A. and Amin, N., 2024b. Assessing the response of local cocoa clones of south Sulawesi for resistance to dieback disease caused by Lasiodiplodia theobromae. Journal of Phytopathology, 172(6), Article e13424. https://doi.org/10.1111/jph.13424

Asman, A., Purung, M.H.B., Lambert, S., Amiruddin, A. and Rosmana, A., 2021. Effect of rootstock and scion on resistance of cocoa clones to vascular streak dieback caused by Ceratobasidium theobromae. Annals of Agricultural Science, 66(1), pp. 25–30. https://doi.org/10.1016/j.aoas.2021.02.005

Atallah, O.O., Hassanin, A.A., Yassin, S.M., Aloufi, A.S., Almanzalawi, E.A., Abdelkhalek, A., Atia, M.M., Behiry, S., Abdelrhim, A.S. and Nehela, Y., 2024. Pathological characterization and management of Lasiodiplodia theobromae, a hemibiotroph with an interkingdom host range. Plant Disease, 108(11), pp. 3243–3257. https://doi.org/10.1094/pdis-03-24-0713-re

Atianashie, M., 2024. Disease detection in CCN-51 cocoa fruits through convolutional neural networks: A novel approach for the Ghana cocoa board. Convergence Chronicles, 5(3), pp. 51–72. https://doi.org/10.53075/Ijmsirq/6554213434324

Auhing Arcos, J.A., Cedeño Moreira, Á.V., Saucedo Aguiar, S., Vera Benites, L.F., Macías Holguín, C.J. and Canchignia Martínez, H.F., 2021. Biodiversidad de ecotipos y rangos de agresividad de Moniliophthora perniciosa, en Theobroma cacao L. nacional de la Costa Ecuatoriana. Scientia Agropecuaria, 12(4), pp. 599–609. https://doi.org/10.17268/sci.agropecu.2021.064

Avendaño-Arrazate, C.H., Guillén-Díaz, S. and Hernández-Gómez, E., 2018. “Regalo de Dios”: Clon de cacao (Theobroma cacao L.) tolerante a Moniliophthora roreri Cif & Par, para la renovación de las zonas cacaoteras de México. AgroProductividad, 11(9), pp. 173–176. https://doi.org/10.32854/agrop.v11i9.1233

Bhatia, R.K., Ullah, S., Hoque, M.Z., Ahmad, I., Yang, Y.H., Bhatt, A.K. and Bhatia, S.K., 2021. Psychrophiles: A source of cold-adapted enzymes for energy efficient biotechnological industrial processes. Journal of Environmental Chemical Engineering, 9(1), Article 104607. https://doi.org/10.1016/j.jece.2020.104607

Boadi, S.A., Olwig, M.F., Asare, R., Bosselmann, A.S., and Owusu, K., 2022. The role of innovation in sustainable cocoa cultivation: Moving beyond mitigation and adaptation. In: M. Coromaldi and S. Auci, eds. Climate-Induced Innovation: Mitigation and Adaptation to Climate Change. Cham: Palgrave Macmillan, pp. 47–80. https://doi.org/10.1007/978-3-031-01330-0_3

Boczo?, A., Hilszcza?ska, D., Wrzosek, M., Szczepkowski, A. and Sierota, Z., 2021. Drought in the forest breaks plant–fungi interactions. European Journal of Forest Research, 140, pp. 1301–1321. https://doi.org/10.1007/s10342-021-01409-5

Burgess, T.I., Howard, K., Steel, E. and Barbour, E.L., 2018. To prune or not to prune; pruning induced decay in tropical sandalwood. Forest Ecology and Management, 430, pp. 204–218. https://doi.org/10.1016/j.foreco.2018.08.009

Carvajal-Carvajal, C. 2019. Especies reactivas del oxígeno: formación, funcion y estrés oxidativo. Medicina legal de Costa Rica, 36(1), pp. 91–100. https://www.scielo.sa.cr/scielo.php?script=sci_arttextandpid=S1409-00152019000100091

Cedeño Moreira, Á. V., Romero Meza, R. F., Auhing Arcos, J.A., Mendoza León, A.F., Abasolo Pacheco, F. and Canchignia Martínez, H.F., 2020. Caracterización de Phytophthora spp. y aplicación de rizobacterias con potencial de biocontrol en la enfermedad de la vaina negra en Theobroma cacao variedad CCN-51. Scientia agropecuaria, 11(4), pp. 503–512. https://doi.org/10.17268/sci.agropecu.2020.04.05

Çelik O?uz, A. and Karakaya, A., 2021. Genetic diversity of barley foliar fungal pathogens. Agronomy, 11(3), Article 434. https://doi.org/10.3390/agronomy11030434

Chang, L., Lu, H., Chen, H., Tang, X., Zhao, J., Zhang, H., Chen, Y. Q. and Chen, W., 2022. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnology Advances, 54, 107794. https://doi.org/10.1016/j.biotechadv.2021.107794

Chóez-Guaranda, I., Espinoza-Lozano, F., Reyes-Araujo, D., Romero, C., Manzano, P., Galarza, L. and Sosa, D., 2023. Chemical characterization of Trichoderma spp. Extracts with antifungal activity against cocoa pathogens. Molecules, 28(7), Article 3208. https://doi.org/10.3390/molecules28073208

Cilas, C. and Bastide, P., 2020. Challenges to cocoa production in the face of climate change and the spread of pests and diseases. Agronomy, 10(9), Article 1232. https://doi.org/10.3390/agronomy10091232

Colonges, K., Loor Solorzano, R.G., Jimenez, J.C., Lahon, M.C., Seguine, E., Calderon, D., Subia, C., Sotomayor, I., Fernández, F., Lebrun, M., Fouet, O., Rhoné, B., Argout, X., Costet, P., Lanaud, C. and Boulanger, R., 2022. Variability and genetic determinants of cocoa aromas in trees native to South Ecuadorian Amazonia. Plants People Planet, 4(6), pp. 618–637. https://doi.org/10.1002/ppp3.10268

Constante, M. P., Tigrero-Vaca, J., Villavicencio-Vasquez, M., Montoya, D.C., Cevallos, J.M. and Coronel-León, J., 2024. Evaluation of stress tolerance and design of alternative culture media for the production of fermentation starter cultures in cacao. Heliyon, 10(8), Article e29900. https://doi.org/10.1016/j.heliyon.2024.e29900

Dahmani, I., Qin, K., Zhang, Y. and Fernie, A.R., 2023. The formation and function of plant metabolons. The Plant Journal, 114(5), pp. 1080–1092. https://doi.org/10.1111/tpj.16179

Delgado-Ospina, J., Molina-Hernández, J.B., Chaves-López, C., Romanazzi, G. and Paparella, A., 2021. The role of fungi in the cocoa production chain and the challenge of climate change. Journal of Fungi, 7(3), Article 202. https://doi.org/10.3390/jof7030202

Delmas, C.E.L., Bancal, M.O., Leyronas, C., Robin, M.H., Vidal, T. and Launay, M., 2024. Monitoring the phenology of plant pathogenic fungi: why and how? Biological Reviews, 99(3), pp. 1075–1084. https://doi.org/10.1111/brv.13058

Díaz-Valderrama, J.R., Leiva-Espinoza, S.T. and Aime, M.C., 2020. The history of cacao and its diseases in the Americas. Phytopathology, 110(10), pp. 1604-1619. https://doi.org/10.1094/PHYTO-05-20-0178-RVW

Eisenman, H.C., Greer, E.M. and McGrail, C.W., 2020. The role of melanins in melanotic fungi for pathogenesis and environmental survival. Applied Microbiology and Biotechnology, 104(10), pp. 4247–4257. https://doi.org/10.1007/s00253-020-10532-z

Erazo Solorzano, C.Y., Tuárez García, D.A., Edison Zambrano, C., Moreno-Rojas, J.M. and Rodríguez Solana, R., 2023. Monitoring Changes in the Volatile Profile of Ecuadorian Cocoa during Different Steps in Traditional On-Farm Processing. Plants, 12(22), Article 3904. https://doi.org/10.3390/plants12223904

Espinal, R.B.A., de Santana, S.F., Santos, V.C., Lizardo, G.N.R., Silva, R.J.S., Corrêa, R.X., Loguercio, L.L., Góes-Neto, A., Pirovani, C.P., Fonseca, C.P.L. and Aguiar, E.R.G.R., 2023. Uncovering a complex virome associated with the cacao pathogens Ceratocystis cacaofunesta and Ceratocystis fimbriata. Pathogens, 12(2), Article 287. https://doi.org/10.3390/pathogens12020287

Etaware, P.M., 2021. The effects of the phytochemistry of cocoa on the food chemistry of chocolate(s) and how disease resistance in cocoa can be improved using CRISPR/Cas9 technology. Food Chemistry. Molecular Sciences, 3, Article 100043. https://doi.org/10.1016/j.fochms.2021.100043

García, V.J., Sánchez-López, K.L., Esquivel Méndez, J.J., Sánchez-Hernández, D., Cervantes-Chávez, J.A., Landeros-Jaime, F., Mendoza-Mendoza, A., Vega-Arreguín, J.C. and Esquivel-Naranjo, E.U., 2024. Carbon and nitrogen sources influence parasitic responsiveness in Trichoderma atroviride NI-1. Journal of Fungi, 10(10), Article 671. https://doi.org/10.3390/jof10100671

González, R., Butkovi?, A. and Elena, S.F., 2020. From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Advances in Virus Research, 106, pp. 85-121. https://doi.org/10.1016/bs.aivir.2020.01.003

Gopaulchan, D., Motilal, L. A., Kalloo, R. K., Mahabir, A., Moses, M., Joseph, F. and Umaharan, P. 2020. Genetic diversity and ancestry of cacao (Theobroma cacao L.) in Dominica revealed by single nucleotide polymorphism markers. Genome, 63(12), pp. 583–595. https://doi.org/10.1139/gen-2019-0214

Hossain, S.I., Saha, S.C. and Deplazes, E., 2021. Phenolic compounds alter the ion permeability of phospholipid bilayersviaspecific lipid interactions. Physical Chemistry Chemical Physics, 23(39), pp. 22352–22366. https://doi.org/10.1039/d1cp03250j

Huaman-Pilco, J., Huaman-Pilco, Á. F., Hernández-Diaz, E., Oliva-Cruz, S. M. and Díaz-Valderrama, J.R., 2024. Dieback and pod rot caused by Lasiodiplodia theobromae and L. iraniensis in native accessions of cacao (Theobroma cacao) from Amazonas, Peru. Indian Phytopathology, 77(3), pp. 693–703. https://doi.org/10.1007/s42360-024-00771-9

Ikechi, C.G. and Nwachukwu, E.O., 2023. Screening of selected plant products as alternatives to agar in mycological studies. Mycopath, 20(1), pp. 39–50. https://journals.pu.edu.pk/journals/index.php/mycopath/article/view/5892

Jaimez, R.E., Barragan, L., Fernández-Niño, M., Wessjohann, L.A., Cedeño-Garcia, G., Sotomayor Cantos, I. and Arteaga, F., 2022. Theobroma cacao L. cultivar CCN 51: a comprehensive review on origin, genetics, sensory properties, production dynamics, and physiological aspects. PeerJ, 10, Article e12676. https://doi.org/10.7717/peerj.12676

Jiang, L., Pettitt, T.R., Buenfeld, N. and Smith, S.R., 2022. A critical review of the physiological, ecological, physical and chemical factors influencing the microbial degradation of concrete by fungi. Building and Environment, 214, Article 108925. https://doi.org/10.1016/j.buildenv.2022.108925

Kumah, P., Lartey, E.N. and Bismark, O., 2020. Anti-microbial Effect of Cocoa Leaf Extracts on Botryodiplodia theobromae; Leading Causative Organism of Crown Rot Disease of Banana (Musa acuminata). Asian Journal of Agricultural and Horticultural Research, 7(3), pp. 40–50. https://ssrn.com/abstract=4461131

La Porta, N., Hietala, A.M. and Baldi, P., 2023. Bacterial diseases in forest trees. In: A. Schenck, ed. Forest Microbiology: Tree Diseases and Pests. Volume 3. Cambridge, MA: Academic Press, pp. 139–166. https://doi.org/10.1016/B978-0-443-18694-3.00001-8

Liu, Y., Chen, Y., Yu, Z. and Zhang, Y., 2023. Biological control of melanin biosynthesis pathway on prolific and pleochromatic induction of Lasiodiplodia theobromae. Archives of Microbiology, 205(1), Article 46. https://doi.org/10.1007/s00203-022-03396-6

Luo, L., Zhang, S., Wu, J., Sun, X. and Ma, A., 2021. Heat stress in macrofungi: effects and response mechanisms. Applied Microbiology and Biotechnology, 105(20), pp. 7567–7576. https://doi.org/10.1007/s00253-021-11574-7

Meza-Sepúlveda, D.C., Castro, A.M., Zamora, A., Arboleda, J.W., Gallego, A.M. and Camargo-Rodríguez, A.V., 2021. Bio-based value chains potential in the management of cacao pod waste in Colombia, a case study. Agronomy, 11(4), Article 693. https://doi.org/10.3390/agronomy11040693

Morales, M., Morocho, J., López, X. and Navas, P., 2024. Application of convolutional neural networks for the detection of diseases in the CCN-51 cocoa fruit by means of a mobile application. In: L. Meng, ed. International Conference on Cloud Computing and Computer Networks (CCCN 2023). Cham: Springer, pp. 3–10. https://doi.org/10.1007/978-3-031-47100-1_1

Mucherino Muñoz, J.J., de Melo, C.A.F., Santana Silva, R.J., Luz, E.D.M.N. and Corrêa, R.X., 2021. Structural and Functional Genomics of the Resistance of Cacao to Phytophthora palmivora. Pathogens, 10(8), Article 961. https://doi.org/10.3390/pathogens10080961

Muñoz, R.M., Lerma, M.L., Castillo, P., Tolosa, V.M., Olmo, D., Trapero, A. and Agustí-Brisach, C., 2022. First report of Lasiodiplodia theobromae causing crown canker of almond in Spain. Journal of Plant Pathology, 104, pp. 411-412 https://doi.org/10.1007/s42161-021-00977-0

Nieves-Orduña, H.E., Krutovsky, K.V. and Gailing, O., 2023. Geographic distribution, conservation, and genomic resources of cacao Theobroma cacao L. Crop Science, 63(4), pp. 1750–1778. https://doi.org/10.1002/csc2.20959

Nieves-Orduña, H.E., Müller, M., Krutovsky, K.V. and Gailing, O., 2021. Geographic patterns of genetic variation among cacao (Theobroma cacao L.) populations based on chloroplast markers. Diversity, 13(6), Article 249. https://doi.org/10.3390/d13060249

Ocampo, C., Malonzo, M.A.C., Grospe, R.A.F., Bagsic, J.T.A., Nozawa, S., Tsurumi, Y. and Watanabe, K., 2024. Lasiodiplodia species isolated from Theobroma cacao in the Philippines and their pathogenicity. Journal of General Plant Pathology, 90(5), pp. 254–266. https://doi.org/10.1007/s10327-024-01187-z

Ofori, A., Padi, F.K., Ameyaw, G.A., Dadzie, A.M., Opoku-Agyeman, M., Domfeh, O. and Ansah, F.O., 2022. Field evaluation of the impact of cocoa swollen shoot virus disease infection on yield traits of different cocoa (Theobroma cacao L.) clones in Ghana. PloS One, 17(1), Article e0262461. https://doi.org/10.1371/journal.pone.0262461

Ofori, A., Padi, F.K., Amoako-Attah, I., Asare, E.K., Dadzie, A. and Bukari, Y., 2023. Genetic variation among cocoa (Theobroma cacao L.) families for resistance to black pod disease under field and laboratory conditions. Ecological Genetics and Genomics, 28, Article 100182. https://doi.org/10.1016/j.egg.2023.100182

Oliver, R.P., 2024. Diseases caused by fungi. In: R.P. Oliver, ed. Agrios' Plant Pathology (Sixth Edition). Cambridge, MA: Academic Press, pp. 339–427. https://doi.org/10.1016/B978-0-12-822429-8.00013-3

Picos-Muñoz, P.A., García-Estrada, R.S., León-Félix, J., Sañudo-Barajas, A. and Allende-Molar, R., 2015. Lasiodiplodia theobromae en cultivos agrícolas de México: taxonomía, hospedantes, diversidad y control. Revista Mexicana de Fitopatología, 33(1), pp. 54-74. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092015000100054

Ploetz, R.C., 2007. Cacao Diseases: Important Threats to Chocolate Production Worldwide. Phytopathology®, 97(12), pp. 1634-1639. https://doi.org/10.1094/PHYTO-97-12-1634

Pokhrel, B., 2021. Effects of environmental factors on crop diseases. Journal of Plant Pathology and Microbiology, 12, Article 553. 10.35248/2157-7471.21.12.553

Polanco Florián, L.G., Alvarado Gómez, O.G., Pérez González, O., González Garza, R. and Olivares Sáenz, E., 2019. Hongos asociados con la muerte regresiva de los cítricos en Nuevo León y Tamaulipas, México. Revista Mexicana de Ciencias Agrícolas, 10(4), pp. 757–764. https://doi.org/10.29312/remexca.v10i4.1417

Polanco, L.R., Gutiérrez, M.L.C., Parra, E.B. and Amaya, J.D.S., 2022. Reacción a la inoculacion artificial con Phytophthora palmivora de frutos desprendidos de clones de cacao seleccionados. Acta Agronómica, 71(2), pp. 40-51.

Polanco-Florián, L.G., Alvarado-Gómez, O.G., Olivares-Sáenz, E., González-Garza, R. and Pérez-González, O., 2020. Control biológico de Lasiodiplodia theobromae y Fomitopsis meliae causantes de la muerte regresiva de los cítricos. Revista Mexicana de Ciencias Agrícolas, 11(5), pp. 1069–1081. https://doi.org/10.29312/remexca.v11i5.2272

Quach, N.T., Vu, T.H.N., Nguyen, T.T.A., Le, P.C., Do, H.G., Nguyen, T.D., Thao, P.T.H., Nguyen, T.T.L., Chu, H.H. and Phi, Q.-T., 2023. Metabolic and genomic analysis deciphering biocontrol potential of endophytic Streptomyces albus RC2 against crop pathogenic fungi. Brazilian Journal of Microbiology, 54(4), pp. 2617–2626. https://doi.org/10.1007/s42770-023-01134-8

Rashad, Y., Aseel, D. and Hammad, S., 2020. Phenolic compounds against fungal and viral plant diseases. In: R. Lone, R. Shuab and A.N. Kamili, eds. Plant Phenolics in Sustainable Agriculture, Volume 1. Cham: Springer, pp. 201–219. https://doi.org/10.1007/978-981-15-4890-1_9

Raymond-Bouchard, I., Tremblay, J., Altshuler, I., Greer, C. W. and Whyte, L.G., 2018. Comparative transcriptomics of cold growth and adaptive features of a eury-and steno-psychrophile. Frontiers in microbiology, 9, Article 1565. https://doi.org/10.3389/fmicb.2018.01565

Restrepo, A., Arango, M., Velez, H. and Uribe, L., 1976. The isolation of Botryodiplodia theobromae from a nail lesion. Sabouraudia, 14(1), pp. 1–4. https://doi.org/10.1080/00362177685190021

Rojo-Poveda, O., Ribeiro, S.O., Anton-Sales, C., Keymeulen, F., Barbosa-Pereira, L., Delporte, C., Zeppa, G. and Stévigny, C., 2021. Evaluation of cocoa bean shell antimicrobial activity: A tentative assay using a metabolomic approach for active compound identification. Planta Medica, 87(10/11), pp. 841–849. https://doi.org/10.1055/a-1499-7829

Saravia-Matus, S.L., Rodríguez, A.G. and Saravia, J.A., 2020. Determinants of certified organic cocoa production: evidence from the province of Guayas, Ecuador. Organic Agriculture, 10, pp. 23-34. https://doi.org/10.1007/s13165-019-00248-4

Somarriba, E., Peguero, F., Cerda, R., Orozco-Aguilar, L., López-Sampson, A., Leandro-Muñoz, M.E., Jagoret, P. and Sinclair, F.L., 2021. Rehabilitation and renovation of cocoa (Theobroma cacao L.) agroforestry systems. A review. Agronomy for Sustainable Development, 41(5), Article 64. https://doi.org/10.1007/s13593-021-00717-9

Subroto, E., Djali, M., Indiarto, R., Lembong, E. and Baiti, N., 2023. Microbiological activity affects post-harvest quality of cocoa (Theobroma cacao L.) beans. Horticulturae, 9(7), Article 805. https://doi.org/10.3390/horticulturae9070805

Thangarajah, K. and Emmanuel, C.J., 2024. Identification of new phylogenetic lineage of Lasiodiplodia causing leaf spot and tip necrosis causing agent on Aloe vera in Sri Lanka and screening eco-friendly control measures. Physiological and Molecular Plant Pathology, 133, Article 102387. https://doi.org/10.1016/j.pmpp.2024.102387

Torres-Rodriguez, J.A., Ramos-Remache, R.A., Reyes-Pérez, J.J., Quinatoa-Lozada, E.F. and Rivas-García, T., 2024. Silicon as a Biostimulant in Cocoa (Theobroma cacao L.) Cultivation and Biological Control Agent for Moniliophthora roreri. Terra Latinoamericana, 42, pp. 1-11 https://doi.org/10.28940/terra.v42i0.1817

Tulshiram, W.S., Mathew, D., Chandrakant, E.S. and Minimol, J.S., 2022. Putative genes and pathways for Vascular Streak Dieback resistance in cocoa (Theobroma cacao L.) identified through the characterization of linked markers. Ecological Genetics and Genomics, 25, Article 100147. https://doi.org/10.1016/j.egg.2022.100147

Yang, Y., Dong, G., Wang, M., Xian, X., Wang, J. and Liang, X., 2021. Multifungicide resistance profiles and biocontrol in Lasiodiplodia theobromae from mango fields. Crop Protection, 145, Article 105611. https://doi.org/10.1016/j.cropro.2021.105611




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.64537

DOI: http://dx.doi.org/10.56369/tsaes.6453



Copyright (c) 2025 Pablo Preciado-Rangel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.