Propagation of Zamia furfuracea L.f. ex Aiton an endangered and endemic species of Veracruz, Mexico

Iliana Santiago-Hernández, Catalino Jorge López-Collado, Alejandro Alonso-López, Martín Mendoza-Briseño, Eusebio Ortega-Jiménez, Alejandro Salinas-Castro

Abstract


Background: The cycad (Zamia furfuracea) belonging to the Zamiaceae family, is native to Mexico and is cultivated in arid regions. It is economically significant due to its high ornamental value. However, sexual reproduction is limited because the seeds are recalcitrant, exhibit slow germination, and have a long production period, resulting in a fragmented and reduced population. Objective: To develop an alternative approach for germinating Z. furfuracea plants using different substrates and applying the plant growth regulator gibberellin to establish a protocol for sexual propagation. Methodology: Z. furfuracea seeds were treated with eight different substrate combinations, with and without the application of gibberellin (GA₃): control with gibberellin (pine bark + perlite) (PIR), sand with gibberellin (ACR), gravel with gibberellin (GCR), peat moss + sand + perlite with gibberellin (PER), control without gibberellin (pine bark + perlite) (PISR), sand without gibberellin (ASR), gravel without gibberellin (GSR), and peat moss + sand + perlite without gibberellin (PESR). The following variables were evaluated: percentage de seed germination, number of leaves, stem diameter, root length, and overall plant length. Results: The use of the plant growth regulator gibberellin across different substrates promoted the germination of Z. furfuracea seeds by day 28. The gravel substrate combined with gibberellin yielded the best plant development, reaching a length of 40 cm at 11 months of cultivation. Implications: The choice of substrate should take into account aeration, drainage, and water retention to optimize the initial growth of plants. Conclusion: The application of substrates supplemented with gibberellin represents an efficient alternative to enhance the germination process, potentially allowing for the development of plants in greenhouse conditions before field transplantation.

Keywords


germination; tetrazolium chloride; gibberellic acid; substrates.

Full Text:

PDF

References


Bösenberg, J.D., 2022. Zamia furfuracea (errata version published in 2023). The IUCN Red List of Threatened Species 2022: e.T213252394A243404393. https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T213252394A243404393.en

Carranza-Díaz, B.C., 2022. Germinación y crecimiento inicial de Myrcianthes rhopaloides (Kunt) Mc Vaugh (chilimar) en diferentes sustratos, Chota, Perú. Tesis. Universidad Nacional Autónoma de Chota, pp 1-131. http://hdl.handle.net/20.500.14142/328

Chen, S.Y., Chien, C.T., Chung, J.D., Yang, Y.S. and Kuo, S.R., 2007. Dormancy-break and germination in seeds of Prunus campanulata (Rosaceae): role of covering layers and changes in concentration of abscisic acid and gibberellins. Seed Science Research, 17(1), pp. 21-32. https://doi:10.1017/S0960258507383190

De Carvalho, T.C., Krzyzanowski, F.C., Ohlson, O. de C. and Panobianco, M., 2013. Tetrazolium test adjustment for wheat sedes. Journal of Seed Science, 35(3), pp. 361-367. https://www.scielo.br/j/jss/a/WwzmxLhHHJWTjDnmD9FjGzd/?format=html〈=en

De Carvalho, T., De Souza Grzybowski, R.C., Ohlson, O. De C. and Panobianco, M., 2014. Adaptation of the tetrazolium test method for estimating the viability of sorghum seeds. Journal of Seed Science, 36 (2), pp. 246-252. https://doi.org/10.1590/2317-1545V32N2713

Dehgan, B. and Schutzman, B., 1983. Efecto de H2SO4 y GA3 en la germinación de semillas de Zamia furfuracea. HortScience, 18 (3), pp. 371-372. https://doi.org/10.21273/HORTSCI.18.3.371

Dhaka, R.K., Thakur, P., Kaler, N.S., Sharma, S.D., Negi, C. and Brahmi, M.K., 2024. Standardization of Quick Seed Viability Protocol for Pinus roxburghii Sarg. Using Tetrazolium Assay. Journal of Advances in Biology and Biotechnology, 27(5), pp. 41-50. http://doi.org/10.9734/JABB/2024/v27i5760

Fiodor, A., Ajijah, N., Dziewit, L. and Pranaw, K., 2023. Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14, pp. 1-15. https://doi.org/10.3389/fmicb.2023.1142966

Fu, D., Wu, W., Mustafa, G., Yang, Y. and Yang, P., 2025, Molecular mechanisms of rice seed germination. New Crops, 2, pp. 1-9. https://doi.org/10.1016/j.ncrops.2024.100051

Gebreselassie, W., Mohammed, A. and Netsere, A., 2010. Pre-sowing treatment of coffee (Coffea arabica L.) seeds to enhance emergence and subsequent growth of seedlings. Research Journal of Seed Science, 3(4), pp, 218-226.

González, K., and Camacho, M., 2000. Test on growing media for Eysenhardtia polystachya, a promising species for planting on degraded areas of Mexico. Seed Science and Technology, 28, pp. 271-275. https://eurekamag.com/research/003/267/003267558.php

Gupta, R., 2024. Comparative assessment of soil effects on germination in radish plants (Raphanus sativus cv Pusa chetki). International Journal of Science and Research, 13(3) pp. 1762-1764. https://doi.org/10.21275/sr24327114304

Khatri, S., Shylla, B., Sharma, D.P., Sharma, R. and Nagu, M., 2025. Mejora de la germinación y el crecimiento de semillas de Diospyros Lotus L. para plántulas de portainjertos injertables robustos utilizando sustratos de cultivo orgánicos y ácido giberélico. Applied Fruit Science, 67 (3), pp. 1-13. https://doi.org/10.1007/s10341-025-01310-0

Klupczy?ska, E.A. and Paw?owski, T.A., 2021. Regulation of seed dormancy and germination mechanisms in a changing environment. International Journal of Molecular Sciences, 22(3), pp. 1-17. https://doi.org/10.3390/ijms22031357

Lima, E.J.M. and Oliveira, A.J., 2024. Breaking dormancy in Cycas revoluta: a study of seed morphological characterization and dormancy mechanisms. Journal of Seed Science, 46, pp. 1-10. https://doi.org/10.1590/2317-1545v46289799

Liu, X., Xiao, Y., Wang, Y., Wang, R., Huang, R., Liang, H. and Jiang, Y., 2024. Seed germination ecology of endangered plant Horsfieldia hainanensis Merr. in China. BMC Plant Biology, 24(1), pp. 1-17. https://doi.org/10.1186/s12870-024-05208-z

Luo, Z., Ma, S., Sun, B., Zhang, X. and Jiang, S., 2025. Optimization of seed germination in snow lotus (Saussurea involucrate): synergistic effects of PEG-GA 3-IBA treatments and peat-vermiculite substrates. BMC Plant Biology, 25, pp. 1-18. https://doi.org/10.21203/rs.3.rs-6339962/v1

Mabuya, N., Jimoh, O.M., October, J. and Laubscher, P.C., 2025. Breaking seed dormancy and improving seedling growth of Encephalartos altensteinii Lehm. using seed hydration-dehydration treatment and acid scarification. Journal of Environmental Horticulture, 43 (1), pp. 19-29. https://doi.org/10.24266/0738-2898-43.1.19

Martínez-Florián, P. and Roca, D., 2011. Sustratos para el cultivo sin suelo: materiales, propiedades y manejo. In: J.V. R. Flórez, eds. Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo. Universidad Nacional de Colombia-Facultad de Agronomía, Bogotá. pp. 37-77. http://hdl.handle.net/20.500.11939/3894

Moore, R.P., 1983. Handbook on tetrazolium testing. International seed testing association, Zurich, Switzerland. https://www.scirp.org/reference/referencespapers?referenceid=2289333

Murphy, V., Moore, K., Griffith, P.M. and Husby, C., 2013. Improving conservation through Cultivation: nine container substrates influence growth of a rare cycad, Zamia pumila L. HortScience, 48 (9), pp. 1168-1172. https://doi.org/10.21273/HORTSCI.48.9.1168

Nadarajan, J., Benson, E.E., Xaba, P., Harding, K., Lindstrom, A., Donaldson, J., Seal, C.E., Kamoga, D., Agoo, E.M.G., Li, N., King, E. and Pritchard, H.W., 2018. Comparative biology of cycad pollen, seed and tissue-a plant conservation perspective. The Botanical Review, 84 (3), pp. 295-314. https://doi.org/10.1007/s12229-018-9203-z

Nagendra, C. and Kumar, S.B., 2022. Macro-propagation and conservation of cycad species at botanical garden. International Journal of Biological and Environmental Investigations, 2, 1-12 pp. https://doi.org/10.33745/ijbei.2022.v02i02.002

Nakano, H., Takahata, K., Mine, Y. and Sugiyama, N., 2020. Characterizing the main and epistatic effects and interactions of germination-related quantitative trait loci of tomato using a backcross inbred line population and near-isogenic lines. Scientia Horticulturae, 261, pp. 1-15. https://doi.org/10.1016/j.scienta.2019.109028

Nolasco-Guzmán, V., Calyecac-Cortero, H.G., Muñoz-Orozco, A., Miranda-Rangel, A. and Cuevas-Sánchez, J.A., 2017. Evaluación experimental de germinación y emergencia en semillas de piñón mexicano del Totonacapan. Revista Mexicana de Ciencias Agrícolas, 7(8), pp. 1959-1971. https://doi.org/10.29312/remexca.v7i8.129

Octavio-Aguilar, P., Iglesias-Andreu, L.G., Nuñez De Cáceres-González, F.F. and Galván-Hernández, D.M., 2017. Fine-scale genetic structure of Zamia furfuracea: variation with life-cycle stages. International Journal of Plant Sciences, 178(1), pp. 57-66. https://doi.org/10.1086/689200

Pérez-Farrera, M.A., Gutiérrez-Ortega, J.S., Martínez-Martínez, M.G. and Calonje, M., 2023, Zamia magnifica (Zamiaceae, Cycadales): a new rupicolous cycad species from Sierra Norte, Oaxaca, Mexico. Taxonomy, 3(2), pp. 232-249. https://doi.org/10.3390/taxonomy3020017

Poursafarali, E, Hashemabadi, D, Kaviani, B, and Kholdi, A., 2011, Effect of different cultivation beds on the vegetative growth of Polianthes tuberosa L. African Journal of Agricultural Research, 6(19), pp. 4451-4454. https://doi.org/10.5897/AJAR11.814

Rizk, T.Y., Othman kholousy, A.S., Saudy, H.S., Sultan, S.S. and Abd-Alwahed, A.A., 2023, Breaking dormancy and enhancing germination of Avena sterilis L. and Amaranthus retroflexus L. weeds by gibberellic acid and potassium nitrate to keep soil and crops healthy. Gesunde Pflanzen, 75(4), pp. 757-763. https://doi.org/10.1007/s10343-022-00780-6

Sedghi, M., 2025. Comprehensive assessment of seed vigor in common bean (Phaseolus Vulgaris L.) using tetrazolium test and antioxidant biomarkers. Social Science Research Network, 24, pp. 1-14. https://dx.doi.org/10.2139/ssrn.5231225

SEMARNAT., 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, protección ambiental–especies nativas de México de flora y fauna silvestres–categorías de riesgo y especificaciones para su inclusión, exclusión o cambio–lista de especies en riesgo. Segunda sección del Diario Oficial de la Federación. https://www.dof.gob.mx/normasOficiales/4254/semarnat/semarnat.htm

Sharma, P., Meyyazhagan, A., Easwaran, M., Sharma, M.M.M., Mehta, S., Pandey, V. and Chelliapan, S., 2022. Hydrogen sulfide: a new ally for seed germination under adverse environmental conditions. Plant Growth Regulation, 98(3), pp. 401-420. https://doi.org/10.1007/s10725-022-00887-w

Smith, S.G., 1978. Seed scarification to speed germination of ornamental cycads (Zamia spp.). HortScience, 13(4), pp. 436-438. https://doi.org/10.21273/hortsci.13.4.436

Szabó-Szöllösi, T., Baracsi, É.H., Csontos, P., Papp, L., Kisvarga, S., Orlóci, L., Házi, J., Kende, Z., Saláta, D., Fuchs, M., Keleti, J.R., Tarnawa, Á., Rusvai, K. and Penksza, K., 2024. Evaluation of native festuca taxa for sustainable application in urban environments: their characteristics, ornamental value, and germination in different growing media. Soil Systems, 8(3), pp. 99-129. https://doi.org/10.3390/soilsystems8030099

Tuan, P.A., Sharma, D., Kalota, R., Kaur, G. and Ayele, B.T. 2025. 1-Molecular mechanisms of seed germination. In: H. Feng., B. Nemzer., J.W. DeVries. and J. Ding., eds. Sprouted Grains: nutritional value, production and applications, second edition. Woodhead Publ. & Cereals & Grains Assoc, pp. 1-33. https://doi.org/10.1016/B978-0-443-23634-1.00001-4

Tunes, C.D., Da Motta Xavier, F., Basilio, V.B., Neumann, A.M., Hartwig, I. and Meneghello, G.E., 2020. Distinct levels of quality of treated soybean seeds evaluated in alternative substrates to the germination test. Brazilian Journal of Development, 6(8), pp. 61623-61635. https://doi.org/10.34117/bjdv6n8-547

Turner, S.R., Cross, A.T., Just, M., Newton, V., Pedrini, S., Tomlinson, S. and Dixon, K., 2022. Restoration seedbanks for mined land restoration. The Journal of the Society for Ecology Restoration, 30 (1), pp. e13667. https://doi.org/10.1111/rec.13667

Turner, S.R., Pedrini, S., Just, M., Grose, D., Willyams, D. and Dixon, K.W, 2023. Are current seed storage approaches suitable for Macrozamia fraseri (Cycadales), a temperate species used in restoration? Conservation Physiology, 11(1), pp. 1-9. https://doi.org/10.1093/conphys/coad096

Vishal, B. and Kumar, P.P., 2018. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Frontiers in Plant Science, 9, pp. 1-15. https://doi.org/10.3389/fpls.2018.00838

Wen, H.,Yang, S., Shang, Z., Yang, S., Li, X., Yu, S., Zhang, H. and Guo, P., 2025. Transcriptome and metabolite conjoint analysis reveal the seed dormancy release process of perilla. Scientific Reports, 15(1), pp. 1-14. https://doi.org/10.1038/s41598-025-91039-3

Zamora-Cornelio, L.F., Ochoa-Gaona, S., Vargas-Simón, G., Castellanos-Albores, J. and De Jong-Bernardus, H.J., 2010. Germinación de semillas y clave para la identificación de plántulas de seis especies arbóreas nativas de humedales del sureste de México. Revista de Biología Tropical, 58(2), pp.717-732.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.63465

DOI: http://dx.doi.org/10.56369/tsaes.6346



Copyright (c) 2025 Alejandro Salinas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.