Physicochemical and functional properties of starches from Brosimum alicastrum (Sw.) and Zea mays obtained by wet-extraction without chemical agents

Sofia Monfort-Grajales, Luis Armando Sarmiento-Franco, Luis Chel-Guerrero, Juan Carlos Cuevas-Bernardino, Carlos Alfredo Sandoval-Castro, David Betancur-Ancona

Abstract


Background: Starch is a polysaccharide widely used in the food industry and other applications due to its functional properties. It is commonly extracted from different sources, mainly grains and tubers. Brosimum aliscastrum Sw. tree is a non-conventional source that may represent a viable alternative that does not compete with resources for either human or animal consumption. Objective: To characterize the physicochemical, functional, and thermo-structural properties of starches isolated from ramon seed (B. alicastrum) and maize (Zea mays) employing a green wet-extraction method without chemical agents. Methodology: Flours from ramon seed (RS) and maize were subjected to soaking, washing, filtering, and centrifugation using only distilled water to isolate starches. Results: Extraction yields were 28.7% for ramon seed starch (RSS) and 36.33% for maize starch (MS). Chemical composition, particularly carbohydrate content (86% for RSS and 87% for MS), was comparable to values obtained by alkaline and acid methods. Amylose content was higher in MS (27.61%) compared to RSS (23.60%). Implications: The results suggest that green extraction demonstrated efficiency in recovering starches with properties comparable to those obtained through conventional chemical methods while also promoting the use of non-conventional sources such as RS. Conclusion: The isolation method employed enables the recovery of starches with yields and physicochemical properties similar to those obtained through conventional methods. The findings highlight the potential of RSS as an alternative source of starch for various applications.

Keywords


sustainable processing, non-conventional starch sources, green extraction, starch properties, structural characterization

Full Text:

PDF

References


AOAC, 1990. Official Methods of Analysis of the Official Analytical Chemists. 15th ed. Arlington, VA:AOAC.

BeMiller, J. and Whistler, R., 2009. Starch: Chemistry and Technology, 3ed. Ed. Elsevier.

Betancur-Ancona, David.A., Chel-Guerrero, L.A., Bello-Pérez, L.A. and Dávila-Ortiz, G., 2002. Isolation of Velvet Bean (Mucuna pruriens) Starch: Physicochemical and Functional Properties. Starch/Stärke, 54, pp.303–309. https://doi.org/10.1002/1521-379X(200207)54:7<303::AID-STAR303>3.0.CO;2-2

Carter, C.T. and Northcutt, J.K., 2023. Raw or roasted Brosimum alicastrum seed powder as a nutritional ingredient in composite sugar?snap cookies. Cereal Chemistry, pp.1–11. https://doi.org/10.1002/cche.10661

Chi, C., Li, X., Huang, S., Chen, L., Zhang, Y., Li, L. and Miao, S., 2021. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends in Food Science and Technology, 109, pp.154–168. https://doi.org/10.1016/j.tifs.2021.01.024

Cornejo-Ramírez, Y.I., Martínez-Cruz, O., Del Toro-Sánchez, C.L., Wong-Corral, F.J., Borboa-Flores, J. and Cinco-Moroyoqui, J., 2018. The structural characteristics of starches and their functional properties. CyTA - Journal of Food, 16(1), pp.1003–1017. https://doi.org/10.1080/19476337.2018.1518343

Donmez, D., Pinho, L., Patel, B., Desam, P. and Campanella, O.H., 2021. Characterization of starch–water interactions and their effects on two key functional properties: starch gelatinization and retrogradation. Current Opinion in Food Science, 39, pp.103–109. https://doi.org/10.1016/j.cofs.2020.12.018

Ecopura, 2018. Technical data sheet: distilled water REDECOPURA. [online] REDECOPURA México. Available at: https://www.redecopura.com.mx/ [Accessed 16 Jul. 2025].

Estrada-León, R.J., Moo-Huchin, V.M., Ríos-Soberanis, C.R., Betancur-Ancona, D., May-Hernández, L.H., Carrillo-Sánchez, F.A., Cervantes-Uc, J.M. and Pérez-Pacheco, E., 2016. The effect of isolation method on properties of parota (Enterolobium cyclocarpum) starch. Food Hydrocolloids, 57, pp.1–9. https://doi.org/10.1016/j.foodhyd.2016.01.008

El Halal, S.L.M., Kringel, D.H., Zavareze, E. da R. and Dias, A.R.G., 2019. Methods for Extracting Cereal Starches from Different Sources: A Review. Starch/Stärke, 71(11–12). https://doi.org/10.1002/star.201900128

Hernández-González, O., Vergara-Yoisura, S. and Larqué-Saavedra, A., 2015. Studies on the productivity of Brosimum alicastrum a tropical tree used for animal feed in the Yucatan Peninsula. Wulfenia Journal, 22(7), pp.206–217

Junejo, S.A., Flanagan, B.M., Zhang, B. and Dhital, S., 2022. Starch structure and nutritional functionality – Past revelations and future prospects. Carbohydrate Polymers, 277. https://doi.org/10.1016/j.carbpol.2021.118837

Kringel, D.H., El Halal, S.L.M., Zavareze, E. da R. and Dias, A.R.G., 2020. Methods for the Extraction of Roots, Tubers, Pulses, Pseudocereals, and Other Unconventional Starches Sources: A Review. Starch/Staerke, 72(11–12). https://doi.org/10.1002/star.201900234

Lee, C.J. and Moon, T.W., 2015. Structural characteristics of slowly digestible starch and resistant starch isolated from heat – moisture treated waxy potato starch. Carbohydrate Polymers, 125, pp.200–205. https://doi.org/10.1016/j.carbpol.2015.02.035

Losoya-Sifuentes, C., Pinto-Jimenez, K., Cruz, M., Rodriguez-Jasso, R.M., Ruiz, H.A., Loredo-Treviño, A., López-Badillo, C.M. and Belmares, R., 2023. Determination of Nutritional and Antioxidant Properties of Maya Nut Flour (Brosimum alicastrum) for Development of Functional Foods. Foods, 12(7). https://doi.org/10.3390/foods12071398

Magallanes-Cruz, P.A., Duque-Buitrago, L.F. and del Rocío Martínez-Ruiz, N., 2023. Native and modified starches from underutilized seeds: Characteristics, functional properties and potential applications. Food Research International, 169, p.112875. https://doi.org/10.1016/J.FOODRES.2023.112875

Miao, M. and Bemiller, J.N., 2023. Enzymatic Approaches for Structuring Starch to Improve Functionality. Annual Review of Food Science and Technology, 14, pp.271–295. https://doi.org/10.1146/annurev-food-072122

Minitab, 2022. Minitab Statistical Software. V.21 USA. Disponible en: http://www.minitab.com/en-US/products/minitab/

Montfort-Grajales, S., Sarmiento-Franco, L.A., Urtecho-Novelo, R. and Sandoval-Castro, C.A., 2024. Estimation of metabolizable and digestible energy of ramon (Brosimum alicastrum Swartz) seed in broilers under tropical conditions. Tropical and Subtropical Agroecosystems, 27(2). https://doi.org/10.56369/tsaes.4775

Moo-Huchin, V.M., Ac-Chim, D.M., Chim-Chi, Y.A., Ríos-Soberanis, C.R., Ramos, G., Yee-Madeira, H.T., Ortiz-Fernández, A., Estrada-León, R.J. and Pérez-Pacheco, E., 2020. Huaya (Melicoccus bijugatus) seed flour as a new source of starch: physicochemical, morphological, thermal and functional characterization. Journal of Food Measurement and Characterization, 14(6), pp.3299–3309. https://doi.org/10.1007/s11694-020-00573-3

Moo-Huchin, V.M., Cabrera-Sierra, M.J., Estrada-León, R.J., Ríos-Soberanis, C.R., Betancur-Ancona, D., Chel-Guerrero, L., Ortiz-Fernández, A., Estrada-Mota, I.A. and Pérez-Pacheco, E., 2015. Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum Swartz seeds. Food Hydrocolloids, 45, pp.48–54. https://doi.org/10.1016/j.foodhyd.2014.11.009

Moorthy, S.N., 2002. Physicochemical and Functional Properties of Tropical Tuber Starches: A Review. Starch/Stärke, pp.559–592. https://doi.org/10.1002/1521-379X(200212)54:12<559::AID-STAR2222559>3.0.CO;2-F

Morrison, W.R. and Laignelet, B., 1983. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. Journal of Cereal Science, 1(1), pp.9–20. https://doi.org/10.1016/S0733-5210(83)80004-6

Olguin-Maciel, E., Larqué-Saavedra, A., Pérez-Brito, D., Barahona-Pérez, L.F., Alzate-Gaviria, L., Toledano-Thompson, T., Lappe-Oliveras, P.E., Huchin-Poot, E.G. and Tapia-Tussell, R., 2017. Brosimum alicastrum as a novel starch source for bioethanol production. Energies, 10(10), pp.1574. https://doi.org/10.3390/en10101574

Palacios-Fonseca, A.J., Castro-Rosas, J., Gómez-Aldapa, C.A., Tovar-Benítez, T., Millán-Malo, B.M., Del Real, A. and Rodríguez-García, M.E., 2013. Effect of the alkaline and acid treatments on the physicochemical properties of corn starch. CYTA - Journal of Food, 11(SUPPL.1), pp.67–74. https://doi.org/10.1080/19476337.2012.761651

Pech-Cohuo, S.C., Hernandez-Colula, J., Gonzalez-Canche, N.G., Salgado-Transito, I., Uribe-Calderon, J., Cervantes-Uc, J.M., Cuevas-Bernardino, J.C., Ayora-Talavera, T. and Pacheco, N., 2021. Starch from Ramon seed (Brosimum alicastrum) obtained by two extraction methods. MRS Advances, 6(38), pp.875–880. https://doi.org/10.1557/s43580-021-00134-w

Pérez-Pacheco, E., Moo-Huchin, V.M., Estrada-León, R.J., Ortiz-Fernández, A., May-Hernández, L.H., Ríos-Soberanis, C.R. and Betancur-Ancona, D., 2014. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbohydrate Polymers, 101(1), pp.920–927. https://doi.org/10.1016/j.carbpol.2013.10.012

Ratnayake, W.S. and Jackson, D.S., 2007. A new insight into the gelatinization process of native starches. Carbohydrate Polymers, 67(4), pp.511–529. https://doi.org/10.1016/j.carbpol.2006.06.025

Shrestha, A.K., Blazek, J., Flanagan, B.M., Dhital, S., Larroque, O., Morell, M.K., Gilbert, E.P. and Gidley, M.J., 2012. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules. Carbohydrate Polymers, 90(1), pp.23–33. https://doi.org/10.1016/j.carbpol.2012.04.041

Shukla, R. and Cheryan, M., 2001. Zein: the industrial protein from corn. Industrial Crops and Products, 13(3), pp.171–192. https://doi.org/10.1016/S0926-6690(00)00064-9

Singla, D., Singh, A., Dhull, S.B., Kumar, P., Malik, T. and Kumar, P., 2020. Taro starch: Isolation, morphology, modification and novel applications concern - A review. International Journal of Biological Macromolecules, 163, pp.1283–1290. https://doi.org/10.1016/j.ijbiomac.2020.07.093

De Souza, D., Sbardelotto, A.F., Ziegler, D.R., Marczak, L.D.F. and Tessaro, I.C., 2016. Characterization of rice starch and protein obtained by a fast alkaline extraction method. Food Chemistry, 191, pp.36–44. https://doi.org/10.1016/j.foodchem.2015.03.032

Wang, Y., Ral, J.-P., Saulnier, L. and Kansou, K., 2022. How Does Starch Structure Impact Amylolysis? Review of Current Strategies for Starch Digestibility Study. Foods, 11(9), p.1223. https://doi.org/10.3390/foods11091223

Zhang, Z., Saleh, A.S.M., Wu, H., Gou, M., Liu, Y., Jing, L., Zhao, K., Su, C., Zhang, B. and Li, W., 2020. Effect of Starch Isolation Method on Structural and Physicochemical Properties of Acorn Kernel Starch. Starch/Staerke, 72(1–2). https://doi.org/10.1002/star.201900122




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.63445

DOI: http://dx.doi.org/10.56369/tsaes.6344



Copyright (c) 2025 Luis Armando Sarmiento-Franco

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.