Genes and mutations in morphological characteristics, productive and reproductive behavior, and carcass and meat quality in pig breeds - advances in genetic improvement

Dany Alejandro Dzib Cauich, Víctor Manuel Meza Villalvazo, Amada Isabel Osorio Terán, José Abad Zavaleta, Nubia Noemi Cob Calan, Wilber Hernández Montiel

Abstract


Background.  The pig (Sus scrofa domesticus) is one of the most important livestock species due to its high productive efficiency, rapid growth rate, high prolificacy, and favourable feed conversion. Its ability to convert inputs into high biological value protein positions it as a key component in food security. Traits such as morphology, productive and reproductive performance, as well as carcass and meat quality, are influenced by gene expression and the presence of specific polymorphisms or mutations. Objective. To review and analyse the available scientific evidence on single nucleotide polymorphisms (SNPs) in genes associated with morphological traits, productive and reproductive performance, as well as carcass and meat quality in pig breeds. Methodology. The study was conducted through a literature search using keywords and genes associated with commercially relevant productive traits in pig breeds. The search was carried out in PubMed, Mendeley, ScienceDirect, Springer, and Google Scholar. A total of 116 articles were retrieved for data analysis, covering the period from 2000 to 2024. Main findings. Genomic tools have enabled the understanding of the molecular mechanisms that influence productive traits in pigs. In this review, the genes TRIB3, BMP2, CSTB, COL21A1, and MSTN were found to be related to productive traits, while among reproductive traits, the genes BMPR1B, ESR2, LEPR, PRL, and GNRHR stand out, and the genes TRIB3, BMP2, COL21A1, MSTN, CTSF, and CSTB are related to growth, backfat, daily weight gain, and meat quality. Likewise, the studies report two SNPs, rs320706814 and rs1112937671, which show significant effects on carcass length and backfat. Implications. These findings contribute to the optimisation of genetic selection programmes, improvement of productive efficiency, and preservation of genetic variability in pig populations. An in-depth exploration of gene networks is essential for enhancing the understanding of these traits. Conclusion. This review identifies key SNPs and genes that may contribute to the genetic selection of pigs exhibiting traits associated with improved productive efficiency. The use of molecular markers enables the more accurate selection of desirable traits, thereby reducing the generation interval and promoting sustainability in pig production.

Keywords


Breeding; diversity; trait; gene; SNPs.

Full Text:

PDF

References


Babicz, M., Szyndler, M., Kasprzyk, A. and Kropiwiec, K., 2017. Analysis of maternal traits in native Pu?awska sows of known Genoty Pe (INS/DEL) at the PRl locus. Annals of Animal Science, 17, pp. 131-142. https://doi.org/10.1515/aoas-2016-0069

Becerril, M., Lemus, C., Herrera, J.G., Huerta, M., Alonso, M., Ramirez, R.; Mota, D. and Ly, J., 2009. Studies on growth of Pelón Mexicano pigs: Effect of rearing conditions on carcass traits and meat quality. Journal of Animal and Veterinary Advances, 8, pp. 202-207. http://dspace.uan.mx:8080/jspui/handle/123456789/171

Belkova, J. and Rozkot, M., 2022. Gilt rearing impacts on sow performance and longevity – a review. Journal of Swine Health and Production, 30, pp. 10-16. https://doi.org/10.54846/jshap/1254

Bian, C., Prakapenka, D., Tan, C., Yang, R., Zhu, D., Guo, X. and Hu, X., 2021. Haplotype genomic prediction of phenotypic values based on chromosome distance and gene boundaries using low-coverage sequencing in Duroc pigs. Genetics Selection Evolution, 53, pp. 1-19. https://doi.org/10.1186/s12711-021-00661-y

Bolet, G., Martinat, F., Locatelli, A., Gruand, J., Terqui, M. and Berthelot, F., 1986. Components of prolificacy in hyperprolific Large White sows compared with the Meishan and Large White breeds. Genetics Selection Evolution, 18, pp. 333-342. https://doi.org/10.1186/1297-9686-18-3-333

Bovo, S., Ribani, A., Muñoz, M., Alves, E., Araujo, J. P., Bozzi, R., ?andek, M., Charneca, R., Di Palma, F., Etherington, G., Fernandez, A.I., García, F., García, J., Karolyi, D., Gallo, M., Margeta, V., Martins, J.M., Mercat, M.J., Moscatelli, G., Nuñez, Y., Quintanilla, R., Radovi?, ?., Razmaite, V., Riquet, J., Savi?, R., Schiavo, G., Usai, G., Utzeri, V., Zimmer, C., Ovilo, C. and Fontanesi, L., 2020. Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems. Genetics Selection Evolution, 52, pp. 1-19. https://doi.org/10.1186/s12711-020-00553-7

Cai, Z., Christensen, O.F., Lund, M.S., Ostersen, T. and Sahana, G., 2022. Large-scale association study on daily weight gain in pigs reveals overlap of genetic factors for growth in humans. BMC Genomics, 23, pp. 1-13. https://doi.org/10.1186/s12864-022-08373-3

Chalkias, H., Rydhmer, L. and Lundeheim, N., 2013. Genetic analysis of functional and non-functional teats in a population of Yorkshire pigs. Livestock Science,152, pp.127-134. https://doi.org/10.1016/j.livsci.2013.01.003

Dall’Olio, S., Fontanesi, L., Tognazzi, L., Russo, V., 2010. Genetic structure of candidate genes for litter size in Italian Large White pigs. Veterinary Research Communications, 34, pp. S203–S206. https://link.springer.com/article/10.1007/s11259-010-9380-7

Declerck, I., Sarrazin, S., Dewulf, J. and Maes, D., 2017. Sow and piglet factors determining variation of colostrum intake between and within litters. Animal 11: 1-8. https://doi.org/10.1017/S1751731117000131

Derks, M.F. L., Gjuvsland, A.B., Bosse, M., Lopes, M.S., Van Son, M., Harlizius, B., Tan, B.F., Hamland, H., Grindflek, E., Groenen, M.A. M. and Megens, H.J., 2019. Loss of function mutations in essential genes cause embryonic lethality in pigs. PLoS Genetics, 15, pp. 1-22. https://doi.org/10.1371/journal.pgen.1008055

Ding, R., Zhuang, Z., Qiu, Y., Wang, X., Wu, J., Zhou, S., Ruan, D., Xu, C., Hong, L., Gu, T., Zheng, E., Cai, G., Huang, W., Wu, Z. and Yang, J., 2022. A composite strategy of genome-wide association study and copy number variation analysis for carcass traits in a Duroc pig population. BMC Genomics, 23, pp. 1-16. https://doi.org/10.1186/s12864-022-08804-1

Driscoll, C. A., Macdonald, D.W. and O’Brien, S.J., 2009. From wild animals to domestic pets, an evolutionary view of domestication. Proceedings of the National Academy of Sciences, 106, pp. 89-109. https://doi.org/10.1073/pnas.090158610

Dzib, C.D.A., Sierra, V.Á.C., Lemus, F.C., Bugarín, P.J.O., Grageola, N.F.G., Segura, C.J.C. and Moo, H.V.M., 2021. Effects of moringa oleifera and brosimum alicastrum partial feed substitution in intramuscular fat and adipose tissues and on the expression of lipogenic genes of Mexican hairless pigs. Austral Journal of Veterinary Sciences, 53, pp. 153-160. https://doi.org/10.4067/S0719-81322021000300153

Ellen, E.D., Bas, T., Albers, G.A.A., Bolhuis, J.E., Camerlink, I., Duijvesteijn, N., Knol, E.F., Muir, W.M., Peeters, K., Reimert, I., Sell, E., van Arendonk, J.A.M., Visscher, J. and Bijma, P., 2014. The prospects of selection for social genetic effects to improve welfare and productivity in livestock. Frontiers in Genetics, 5, pp. 1-14. https://doi.org/10.3389/fgene.2014.00377

Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S. and Mitchell, S. E., 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6: 1-10. https://doi.org/10.1371/journal.pone.0019379

Falconer, D.S., 1996. Introduction to Quantitative Genetics. In D. S. Falconer (Ed.), Principles of Plant Genetics and Breeding (3rd ed.). https://doi.org/10.1002/9781118313718.ch4

Fan, B., Onteru, S.K., Mote, B.E., Serenius, T., Stalder, K.J. and Rothschild, M.F., 2009. Large-scale association study for structural soundness and leg locomotion traits in the pig. Genetics Selection Evolution, 41, pp. 1-9. https://doi.org/10.1186/1297-9686-41-14

Farmer, C., Palin, M.F., Theil, P.K., Sorensen, M.T. and Devillers, N., 2012. Milk production in sows from a teat in second parity is influenced by whether it was suckled in first parity. Journal of Animal Science, 90, pp. 3743-3751. https://doi.org/10.2527/jas.2012-5127

Fontanesi, L., Colombo, M., Tognazzi, L., Scotti, E., Buttazzoni, L., Dall’Olio, S., Davoli, R. and Russo, V., 2011. The porcine TBC1D1 gene: Mapping, SNP identification, and association study with meat, carcass and production traits in Italian heavy pigs. Molecular Biology Reports, 38, pp. 1425-1431. https://doi.org/10.1007/s11033-010-0247-3

Fontanesi, L., Colombo, M., Scotti, E., Buttazzoni, L., Bertolini, F., Dall’Olio, S., Davoli, R. and Russo, V., 2010. The porcine tribbles homolog 3 (TRIB3) gene: Identification of a missense mutation and association analysis with meat quality and production traits in Italian heavy pigs. Meat Science, 86, pp. 808-813. https://doi.org/10.1016/j.meatsci.2010.07.001

Fontanesi, L., Scotti, E., Buttazzoni, L., Dall’Olio, S., Davoli, R., and Russo, V., 2010. A single nucleotide polymorphism in the porcine cathepsin K (CTSK) gene is associated with back fat thickness and production traits in Italian Duroc pigs. Molecular Biology Reports 37: 491-495. https://doi.org/10.1007/s11033-009-9678-0

Gong, H., Xiao, S., Li, W., Huang, T., Huang, X., Yan, G., Huang, Y., Qiu, H., Jiang, K., Wang, X., Zhang, H., Tang, J., Li, L., Li, Y., Wang, C., Qiao, C., Ren, J., Huang, L. and Yang, B., 2019. Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. Journal of Animal Breeding and Genetics, 136, pp.1-12. https://doi.org/10.1111/jbg.12365

Hao, X., Plastow, G., Zhang, C., Xu, S., Hu, Z., Yang, T., Wang, K., Yang, H., Yin, X., Liu, S., Wang, Z., Wang, Z. and Zhang, S., 2017. Genome-wide association study identifies candidate genes for piglet splay leg syndrome in different populations. BMC Genetics, 18, pp. 1-8. https://doi.org/10.1186/s12863-017-0532-4

Hong, Y., Ye, J., Dong, L., Li, Y., Yan, L., Cai, G., Liu, D., Tan, C. and Wu, Z., 2021. Genome-Wide Association Study for Body Length, Body Height, and Total Teat Number in Large White Pigs. Frontiers in Genetics, 12, pp.1-10. https://doi.org/10.3389/fgene.2021.650370

Hurley, W.L., 2019. Review: Mammary gland development in swine: Embryo to early lactation. Animal, 13, pp. S11-S19. https://doi.org/10.1017/S1751731119000521

Jurisicova, A. and Acton, B.M., 2004. Deadly decisions: The role of genes regulating programmed cell death in human preimplantation embryo development. Reproduction, 128, pp. 281–291. https://doi.org/10.1530/rep.1.00241

King, A.H., Jiang, Z., Gibson, J.P., Haley, C.S. and Archibald, A.L., 2003. Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Biology of Reproduction, 68, pp. 2172-2179. https://doi.org/10.1095/biolreprod.102.012955

Klein, S., Brandt, H.R. and König, S., 2018. Genetic parameters and selection strategies for female fertility and litter quality traits in organic weaner production systems with closed breeding systems. Livestock Science, 217, pp. 1-7. https://doi.org/10.1016/j.livsci.2018.09.004

Knol, E.F., Van, D. and Zak, L.J., 2022. Genetic aspects of piglet survival and related traits: a review. Journal of Animal Science, 100, pp. 1-9. https://doi.org/10.1093/jas/skac190

Lan, Q., Deng, Q., Qi, S., Zhang, Y., Li, Z., Yin, S.. Li, Y., Tan, H., Wu, M., Yin, Y., He, J, and Liu, M. 2023. Genome-wide association analysis identified variants associated with body measurement and reproduction traits in shaziling pigs. Genes, 14, pp. 522. https://doi.org/10.3390/genes14020522

Le, H.T., Nilsson, K., Norberg, E. and Lundeheim, N., 2015. Genetic association between leg conformation in young pigs and sow reproduction. Livestock Science, 178, pp. 9-17. https://doi.org/10.1016/j.livsci.2015.05.025

Le, T.H., Christensen, O.F., Nielsen, B. and Sahana, G., 2017. Genome-wide association study for conformation traits in three Danish pig breeds. Genetics Selection Evolution, 49, pp.1-12. https://doi.org/10.1186/s12711-017-0289-2

Leal, D.F., Muro, B.B.D., Nichi, M., Almond, G.W., Viana, C.H. C., Vioti, G., Carnevale, R.F. and Garbossa, C. A. P., 2019. Effects of post-insemination energy content of feed on embryonic survival in pigs: A systematic review. Animal Reproduction Science, 205, pp.70-77. https://doi.org/10.1016/j.anireprosci.2019.04.005

Lemus, A.G., Lemus, F.C., Bugarín, P.J.O., Grageola, Ñ.F., Ayala, V.M.A., Duifhuis, R.T., Moo, H.V.M. and Dzib, C.D., 2020. Effect of diets with avocado meal on lipids in muscle, antioxidants and gene expression in finished pigs. Revista Bio Ciencias, 7, pp. 1-18. https://doi.org/10.15741/revbio.07.e968

Li, J., Peng, S., Zhong, L., Zhou, L., Yan, G., Xiao, S., Ma, J. and Huang, L., 2021. Identification and validation of a regulatory mutation upstream of the BMP2 gene associated with carcass length in pigs. Genetics Selection Evolution, 53, pp. 1-13. https://doi.org/10.1186/s12711-021-00689-0

Li, W., Zhang, M., Li, Q., Tang, H., Zhang, L., Wang, K., Zhu, M., Lu, Y., Bao, H., Zhang, Y., Li, Q., Wu, K. and Wu, C., 2017. Whole-genome resequencing reveals candidate mutations for pig prolificacy. Proceedings: Biological Sciences, 284, pp. 1-9. http://dx.doi.org/10.1098/rspb.2017.2437

Li, Y., Li, B., Yang, M., Han, H., Chen, T., Wei, Q., Miao, Z., Yin, L., Ran Wang, R., Shen, J., Li, X., Xu, X., Fang, M. and Zhao, S., 2020. Genome-Wide Association Study and Fine Mapping Reveals Candidate Genes for Birth Weight of Yorkshire and Landrace Pigs. Frontier in Genetic, 11, pp. 1-10. http://dx.doi.org/10.3389/fgene.2020.00183

Li, Y., Pu, L., Shi, L., Gao, H., Zhang, P., Wang, L. and Zhao, F., 2021. Revealing New Candidate Genes for Teat Number Relevant Traits in Duroc Pigs Using Genome-Wide Association Studies. Animals, 11, pp. 1-11. https://doi.org/10.3390/ani11030806

Liu, G., Jennen, D.G. J., Tholen, E., Juengst, H., Kleinwächter, T., Hölker, M., Tesfaye, D., Ün, G., Schreinemachers, H.J., Murani, E., Ponsuksili, S., Kim, J.J., Schellander, K. and Wimmers, K., 2007. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics, 38, pp. 241-252. https://doi.org/10.1111/j.1365-2052.2007.01592.x

Lopes, M.S., Bastiaansen, J.W.M., Harlizius, B., Knol, E.F. and Bovenhuis, H., 2014. A genome-wide association study reveals dominance effects on number of teats in pigs. PLoS ONE, 9, pp. 1-8. https://doi.org/10.1371/journal.pone.0105867

Lunde, A., Melve, K.K., Gjessing, H.K., Skjærven, R. and Irgens, L. M., 2007. Genetic and environmental influences on Birth Weight, Birth Length, Head Circumference, and Gestational Age by Use of Population-based Parent-Offspring Data. American Journal of Epidemiology, 165, pp. 734-741. https://doi.org/10.1093/aje/kwk107

Ma, X., Li, P.H., Zhu, M.X., He, L.C., Sui, S.P., Gao, S., Su, G.S., Ding, N.S., Huang, Y., Lu, Z.Q., Huang, X.G. and Huang, R.H., 2018. Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal, 12, pp. 1-9. https://doi.org/10.1017/S1751731118000332

Matika, O., Robledo, D., Pong, R., Bishop, S.C., Riggio, V., Finlayson, H., Lowe, N.R., Hoste, A.E., Walling, G.A., del Pozo, J., Archibald, A.L., Woolliams, J.A. and Houston, R.D., 2019. Balancing selection at a premature stop mutation in the myostatin gene underlies a recessive leg weakness syndrome in pigs. PLoS Genetics, 15, pp.1-15. https://doi.org/10.1371/journal.pgen.1007759

Millar, J. and Connell, J., 2010. Strategies for scaling out impacts from agricultural systems change: The case of forages and livestock production in Laos. Agriculture and Human Values, 27, pp. 213-225. https://doi.org/10.1007/s10460-009-9194-9

Murray, J.D., 1999. Genetic modification of animals in the next century. Theriogenology, 51, pp. 149–159. https://doi.org/10.1016/S0093-691X(98)00238-6

Nii, M., Hayashi, T., Tani, F., Niki, A., Mori, N., Fujishima, N., Komatsu, M., Aikawa, K., Awata, T. and Mikawa, S., 2006. Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar x Large White intercross. Animal Genetics, 37, pp. 342-347. https://doi.org/10.1111/j.1365-2052.2006.01485.x

Nosil, P., Feder, J.L. and Gompert, Z., 2021. Biodiversity, resilience and the stability of evolutionary systems. Current Biology, 31, pp. R1149-R1153. https://doi.org/10.1016/j.cub.2021.01.022

OECD/FAO 2021. Perspectivas Agrícolas 2021 2030, Accessed on: June 15, 2025 https://doi.org/10.1787/47a9fa44-es.

Perez, E. M. and Gianola, D., 1992. Estimates of genetic parameters for litter size in six strains of Iberian pigs. Livestock Production Science, 32, pp. 283-293. https://doi.org/10.1016/S0301-6226(12)80007-8

Pfeiffer, C., Fuerst, B.; Schodl, K. and Knapp, P., 2019. Genetic analysis of feet and leg conformation and proportion of crushed piglets in austrian large white and landrace sows. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67, pp. 1213-1219. https://doi.org/10.11118/actaun201967051213

Prieto, M.S, and Rumbo-Prieto, J.M., 2018. The systematic review: Plurality of approaches and methodologies. Enfermería Clínica, 28, pp. 387-393. https://doi.org/10.1016/j.enfcli.2018.08.008

Ramayo, C.Y., Mercadé, A., Castelló, A., Yang, B., Rodríguez, C., Alves, E., Díaz, I., Ibáñez, N., Noguera, J.L., Pérez, M., Fernández, A.I. and Folch, J. M., 2012. Genome-wide association study for intramuscular fatty acid composition in an Iberian × Landrace cross. Journal of Animal Science, 90, pp. 2883-2893. https://doi.org/10.2527/jas.2011-4900

Ritchil, C.H., Hossain, M.M. and Bhuiyan, A.K.F.H., 2014. Phenotypic and morphological characterization and reproduction attributes of native pigs in Bangladesh. Animal Genetic Resources, 54, pp. 1-9. https://doi.org/10.1017/S207863361400006X

Rodriguez, V.R., Maffioly, J.I., Zdanovicz, L.A., Fabre, R.M., Barrandeguy, M.E., García, M.V. and Lagadari, M., 2022. Genetic diversity of meat quality related genes in Argentinean pigs. Veterinary and Animal Science, 15, pp. 1-10. https://doi.org/10.1016/j.vas.2022.100237

Rohrer, G.A. and Nonneman, D.J., 2017. Genetic analysis of teat number in pigs reveals some developmental pathways independent of vertebra number and several loci which only affect a specific side. Genetics Selection Evolution, 49, pp. 1-11. https://doi.org/10.1186/s12711-016-0282-1

Rootwelt, V., Reksen, O. and Framstad, T., 2012. Production traits of litters in 2 crossbred duroc pig lines. Journal of Animal Science, 90, pp. 152-158. https://doi.org/10.2527/jas.2011-3851

Russo, V., Davoli, R., Nanni, L., Fontanesi, L., Baiocco, C., Buttazzoni, L., Galli, S. and Virgili, R., 2003. Association of the CTSB, CTSF and CSTB genes with growth, carcass and meat quality traits in heavy pigs. Italian Journal of Animal Science, 2, pp. 67-69. Accessed on: Diciembre 28, 2024

Salek, S., Jafarikia, M., Sargolzaei, M., Sullivan, B. and Miar, Y., 2021. Genomic Prediction of Average Daily Gain, Back-Fat Thickness, and Loin Muscle Depth Using Different Genomic Tools in Canadian Swine Populations. Frontiers in Genetics,12, pp.1-13. https://doi.org/10.3389/fgene.2021.665344

Schodl, K., Revermann, R., Winckler, C., Fuerst,B., Leeb, C., Willam, A., Knapp, P. and Pfeiffer, C., 2019. Assessment of piglet vitality by farmers-validation of a scoring scheme and estimation of associated genetic parameters. Animals, 9, pp.1-9. https://doi.org/10.3390/ani9060317

Serenius, T. and Stalder, K.J., 2004. Genetics of length of productive life and lifetime prolificacy in the Finnish Landrace and Large White pig populations. Journal of Animal Science, 82, pp. 3111-3117. https://doi.org/10.2527/2004.82113111x

Serenius, T., Sevon, M.L., Kause, A., Mäntysaari, E.A. and Mäki, A., 2004. Genetic associations of prolificacy with performance, carcass, meat quality, and leg conformation traits in the Finnish Landrace and Large White pig populations. Journal of Animal Science, 82, pp. 2301-2306. https://doi.org/10.2527/2004.8282301x

Shi, L., Li, Y., Liu, Q., Zhang, L., Wang, L., Liu, X., Gao, H., Hou, X., Zhao, F., Yan, H. and Wang, L., 2021. Identification of SNPs and Candidate Genes for Milk Production Ability in Yorkshire Pigs. Frontiers in Genetics, 12, pp. 1-11. https://doi.org/10.3389/fgene.2021.724533

Smith, S., Stone, A., Oswalt, H., Vaughan, L., Ferdous, F., Scott, T. and Dunn, H. W., 2022. Evaluation of early post-natal pig mammary gland development and human breast cancer gene expression. Developmental Biology, 481, pp. 95-103. https://doi.org/10.1016/j.ydbio.2021.10.004

Teixeira, S. A., Marques, D. B. D., Costa, T. C., Oliveira, H. C., Costa, K. A., Carrara, E. R., da Silva, W., Guimarães, J. D., Neves, M. M., Ibelli, A. M. G., Cantão, M. E., Ledur, M. C., Peixoto, J. O., and Guimarães, S. E. F., 2021. Transcription landscape of the early developmental biology in pigs. Animals, 11: 1-19. https://doi.org/10.3390/ani11051443

Terman A. and Kumalska M., 2012. The Effect of a SNP in ESR Gene on the Reproductive Performance Traits in Polish Sows1. Russian Journal of Genetics, 12, pp. 1260–1263. https://link.springer.com/article/10.1134/S1022795412120137

Tian, Z., Li-gang, W., Hui-bi, S., Hua, Y., Long-chao, Z., Xin, L., Lei, P., Jing, L., Yue-bo, Z., Ke-bin, Z. and Li-xian, W., 2016. Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows. Journal of Integrative Agriculture, 15, pp. 848-854. https://doi.org/10.1016/S2095-3119(15)61155-8

Tirados, S.P., 2001. Livestock Genetic Improvement in the Second Half of the 20th Century. Archivos de Zootecnia, 50, pp. 517-546. http://www.redalyc.org/articulo.oa?id=49519206

Uzzaman, M.R., Park, J.E., Lee, K.T., Cho, E.S., Choi, B.H. and Kim, T.H., 2018. A genome-wide association study of reproductive traits in a Yorkshire pig population. Livestock Science, 209, pp. 67-72. https://doi.org/10.1016/j.livsci.2018.01.005

Vitezica, Z.G., Reverter, A., Herring, W. and Legarra, A., 2018. Dominance and epistatic genetic variances for litter size in pigs using genomic models. Genetics Selection Evolution, 50, pp. 1-8. https://doi.org/10.1186/s12711-018-0437-3

Wang, H., Wang, X., Li, M., Sun, H., Chen, Q., Yan, D., Dong, X., Pan, Y. and Lu, S., 2022b. Genome-Wide Association Study of Growth Traits in a Four-Way Crossbred Pig Population. Genes, 13, pp. 1-22. https://doi.org/10.3390/genes13111990

Wang, H., Wang, X., Yan, D., Sun, H., Chen, Q., Li, M., Dong, X., Pan, Y. and Lu, S., 2022a. Genome-wide association study identifying genetic variants associated with carcass backfat thickness, lean percentage and fat percentage in a four-way crossbred pig population using SLAF-seq technology. BMC Genomics, 23, pp. 1-13. https://doi.org/10.1186/s12864-022-08827-8

Wang, X., Liu, X., Deng, D., Yu, M. and Li, X., 2016. Genetic determinants of pig birth weight variability. BMC Genetics, 17, pp. 42-48. https://doi.org/10.1186/s12863-015-0309-6

Wang, Y., Ding, X., Tan, Z., Ning, C., Xing, K., Yang, T., Pan, Y., Sun, D. and Wang, C., 2017. Genome-wide association study of piglet uniformity and farrowing interval. Frontiers in Genetics, 8, pp. 1-9. https://doi.org/10.3389/fgene.2017.00194

Wei, J., Sun, J., Pan, M., Wang, Y., Yuan, T., Guo, A., Han, R., Ding, X., Yu, T. and Ding, R., 2024. Revealing genes related teat number traits via genetic variation in Yorkshire pigs based on whole-genome sequencing. BMC Genomics, 25, pp. 1-12. https://doi.org/10.1186/s12864-024-11109-0

Wu, P., Wang, K., Yang, Q., Zhou, J., Chen, D., Ma, J., Tang, Q., Jin, L., Xiao, W., Jiang, A., Jiang, Y., Zhu, L., Li, M., Li, X. and Tang, G., 2018b. Identifying SNPs and candidate genes for three litter traits using single-step GWAS across six parities in landrace and large white pigs. Physiological Genomics, 50, pp. 1026-1035. https://doi.org/10.1152/physiolgenomics.00071.2018

Wu, P., Yang, Q., Wang, K., Zhou, J., Ma, J., Tang, Q., Jin, L., Xiao, W., Jiang, A., Jiang, Y., Zhu, L., Li, X. and Tang, G., 2018a. Single step genome-wide association studies based on genotyping by sequence data reveals novel loci for the litter traits of domestic pigs. Genomics, 110, pp. 171-179. https://doi.org/10.1016/j.ygeno.2017.09.009

Xie, L., Qin, J., Yao, T., Tang, X., Cui, D., Chen, L., Rao, L., Xiao, S., Zhang, Z. and Huang, L., 2023. Genetic dissection of 26 meat cut, meat quality and carcass traits in four pig populations. Genetics Selection Evolution, 55, pp. 1-12. https://doi.org/10.1186/s12711-023-00817-y

Xu, S., Hao, X., Zhang, M., Wang, K., Li, S., Chen, X., Yang, L., Hu, L. and Zhang, S., 2018. Polymorphisms of HOMER1 gene are associated with piglet splay leg syndrome and one significant SNP can affect its intronic romoter activity in vitro. BMC Genetics, 19, pp. 1-8. https://doi.org/10.1186/s12863-018-0701-0

Yakubu, A., Durven, G.L. and Hagan, J., 2022. Multivariate analysis of body weight, morphometric and thermo-physiological traits of indigenous pigs under tropical conditions. Genetics and Biodiversity Journal, 6, pp. 91-104. https://doi.org/10.46325/gabj.v6i1.202

Zhang, M., Wang, S., Liu, Y., Zhang, Y. and Wu, K. 2018. Candidate Mutations in BMPR1B Affecting Pig Prolificacy. International Journal of Pure and Applied Zoology, 6, pp. 45-47. Accessed on: Mayo 22, 2024

Zhang, T., Zheng, Y., Kuang, T., Yang, L., Jiang, H., Wang, H., Zhao, Y., Han, R. and Che, D., 2022. Arginine Regulates Zygotic Genome Activation in Porcine Embryos Under Nutrition Restriction. Frontiers in Veterinary Science, 9, pp. 1-15. https://doi.org/10.3389/fvets.2022.921406

Zhang, Y., Lai, J., Wang, X., Li, M., Zhang, Y., Ji, C., Chen, Q. and Lu, S., 2023. Genome-wide single nucleotide polymorphism (SNP) data reveal potential candidate genes for litter traits in a Yorkshire pig population. Archives Animal Breeding, 66, pp. 357-368. https://doi.org/10.5194/aab-66-357-2023

Zhang, Z., Chen, Z., Ye, S., He, Y., Huang, S., Yuan, X., Chen, Z., Zhang, H. and Li, J., 2019. Genome?wide association study for reproductive traits in a Duroc pig population. Animals, 9, pp. 1-10. https://doi.org/10.3390/ani9100732

Zhao, X., Wang, C., Wang, Y., Lin, H., Wang, H., Hu, H. and Wang, J., 2019. Comparative gene expression profiling of muscle reveals potential candidate genes affecting drip loss in pork. BMC Genetics, 20, pp. 1-9. https://doi.org/10.1186/s12863-019-0794-0

Zhao, Y.X., Gao, G.X., Zhou, Y., Li, B., El-Ashram, S. and Li, Z.L., 2022. Genome-wide association studies uncover genes associated with litter traits in the pig. Animal, 16, pp. 1-15. https://doi.org/10.1016/j.animal.2022.100672

Zhuang, Z., Ding, R., Peng, L., Wu, J., Ye, Y., Zhou, S., Wang, X., Quan, J., Zheng, E., Cai, G., Huang, W., Yang, J. and Wu, Z., 2020. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genomics, 21, pp. 1-16. https://doi.org/10.1186/s12864-020-6742-6

Zong, W., Wang, J., Zhao, R., Naiqi Niu, N., Yanfang Su, Y., Hu, Z., Liu, X., Hou, X., Wang, L., Wang, L. and Zhang, L., 2023. Associations of genome?wide structural variations with phenotypic differences in cross?bred Eurasian pigs. Journal of Animal Science and Biotechnology, 14, pp. 1-20. https://doi.org/10.1186/s40104-023-00929-x

Zumbo, A., Sutera, A. M., Tardiolo, G., and D’Alessandro, E., 2020. Sicilian black pig: An overview. Animals 10: 1-13. https://doi.org/10.3390/ani10122326




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.63076

DOI: http://dx.doi.org/10.56369/tsaes.6307



Copyright (c) 2025 Dany Alejandro Dzib cauich

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.