Pine resin: A non-timber forest product with history in Mexico

María Mercedes Cervantes Machuca, Salvador Lozano Trejo, Gerardo Rodríguez Ortiz, José Raymundo Enríquez del Valle, Ernesto Castañeda Hidalgo

Abstract


Background. Pine resin is a non-timber forest product of great importance due to its versatility, which allows obtaining derivatives with extensive applicability and high added value as it is a natural and renewable raw material with diverse uses, which holds promise for the future as a substitute. of oil. Objective. To provide technical and scientific evidence on resin production, species used, potential states for exploitation, and ecological and dendrometric characteristics associated with resin production in Mexico. Methodology. Documentary research was used from an exhaustive review of literature on the subject of pine resin using as keywords, resin, resin canals, resin extraction methods and resin production; the information search was carried out on platforms such as Science Direct, Scielo, Scopus, Redalyc and Google Scholar. Main findings. Worldwide, Mexico ranks sixth in pine resin production with 20,000 t/year; in the country, only Michoacán contributes with 90 % of resin production followed by Jalisco, Oaxaca and the Estado de Mexico with the remaining 10 %. The most important resin species in Mexico are: Pinus oocarpa, P. devoniana, P. pringlei, P. montezumae, P. leiophylla, P. teocote, P. douglasiana, P. lawsonii, P. pseudostrobus and P. herrerae. Implications. The resin activity, despite being of social importance by providing additional income, has suffered lag in the production process (harvest, transformation and marketing), scarce research and dissemination, and continued abandonment by producers. Conclusions. The resin use is a non-invasive activity in trees, this means that other environmental services remain intact; furthermore, Mexico is a country with a great diversity of resin species and has large forest areas that are ideal for this productive activity. 

Keywords


Rosin; Pinus; resin; resining method; turpentine.

Full Text:

PDF

References


Agrios, G.N., 2005. How plants defend themselves against pathogens, in: Plant Pathology. Elsevier, pp. 207–248. https://doi.org/10.1016/B978-0-08-047378-9.50012-9

Aldas, M., Pavon, C., López-Martínez, J. and Arrieta, M.P., 2020. Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. Applied Sciences, 10, p. 2561. https://doi.org/10.3390/app10072561

Arrabal, C., García-Vallejo, M.C., Cadahia, E., Cortijo, M. and Fernández De Simón, B., 2014. Seasonal variations of lipophilic compounds in needles of two chemotypes of Pinus pinaster Ait. Plant Systematics and Evolution, 300, pp. 359–367. https://doi.org/10.1007/s00606-013-0888-5

Bhatia, S., 2016. Global impact of the modern pine chemical industry. Lakshmikumaran & Sridharan, p. 44.

Blanche, C.A., Lorio, P.L., Sommers, R.A., Hodges, J.D. and Nebeker, T.E., 1992. Seasonal cambial growth and development of loblolly pine: Xylem formation, inner bark chemistry, resin ducts, and resin flow. Forest Ecology and Management, 49, pp. 151–165. https://doi.org/10.1016/0378-1127(92)90167-8

Bruneton, J., Villar del Fresno, Á., Carretero Accame, E. and Rebuelta Lizabe, M., 1991. Elementos de fitoquímica y farmacognosia. Acribia, Zaragoza, p. 594.

Cabrita, P., 2021. A Model for Resin Flow, in: Ramawat, K.G., Ekiert, H.M. and Goyal, S. (Eds.), Plant Cell and Tissue Differentiation and Secondary Metabolites, Reference Series in Phytochemistry. Springer International Publishing, Cham, pp. 117–144. https://doi.org/10.1007/978-3-030-30185-9_5

Candaten, L., Lazarotto, S., Zwetsch, A.P.R., Rieder, E., Silva, M.D., da Machado, G., Balbinot, R. and Trevisan, R., 2021. Resinagem de pinus no Brasil: Aspectos gerais, métodos empregados e mercado. Evangelista, Wescley (org.). Produtos Florestais Nao Madeireiros: tecnologia, mercado, pesquisas e atualidades. Científica, 3. pp. 44-58. https://doi.org/10.37885/210504772.

Capilla-Dinorin, E., López-Upton, J., Jiménez-Casas, M. and Rebolledo-Camaho, V., 2021. Características reproductivas y calidad de semilla en poblaciones fragmentadas de Pinus chiapensis (Martínez) Andresen. Revista Fitotecnia Mexicana, 44, pp. 211–219.

CONAFOR, 2013. La producción de resina de pino en México. CONAFOR, Guadalajara México, p. 101.

CONAFOR, 2020. El sector forestal mexicano en cifras 2019. CONAFOR, México, p. 104.

Corredor, J.A.G. and Villa, R.A.S., 2014. Obtención de colofonia y trementina a partir de la resina de Pinus oocarpa extraída de un bosque industrial en Cauca-Colombia. Journal de Ciencia e Ingeniería, 6(1), pp. 65–69.

Corredor, J.A.G. and Villa, R.A.S., 2013. Obtención de colofonia y trementina a partir de resina de pino de la especie patula y posterior evaluación de los parámetros de calidad. Journal de Ciencia e Ingeniería, 5, pp. 88–91.

Crespo, Y.A., Abreu, L.C., Tiomnova, O.T., Vigueiras, A.C., Morales, J.E.T. and Suárez, R.C., 2007. Resina de Pino: Química verde y potencialidades biológicas. Revista Cubana de Química, XIX(1), pp. 91-93.

Cunningham, A., 2012. Pine resin tapping techniques used around the world, in: Pine Resin: Biology, Chemistry and Applications. Research Signpost.T. C., Kerala, India.

Cunningham, A., 2009. Estudio de mercado de los productos resinosos: Colofonia y Aguarrás; y el potencial de la miera Ibérica de la Comarca del Izana para diferentes usos industriales. BOCYL, 48, p. 70.

Da Silva Rodrigues-Corrêa, K.C., De Lima, J.C. and Fett-Neto, A.G., 2013. Oleoresins from Pine: Production and Industrial Uses, in: Ramawat, K.G. and Mérillon, J.-M. (Eds.), Natural Products. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 4037–4060. https://doi.org/10.1007/978-3-642-22144-6_175

SEMARNAT. (2011). NOM-026-SEMARNAT-2005: Que establece los criterios y especificaciones técnicas para realizar el aprovechamiento comercial de resina de pino. Diario Oficial de la Federación. Ratificada en 2011. Recuperado de https://www.economia.gob.mx/files/dgn/revisionquinquenal/NOM-026-SEMARNAT-2005%20%282011%29.pdf

Egloff, P., 2019. Tapping Pinus oocarpa assessing drivers of resin yield in natural stands of Pinus oocarpa. Master thesis. Wageningen University & Research, Wageningen, Países Bajos. p. 33.

Esteban, L.G., Martín, J.A., De Palacios, P. and Fernández, F.G., 2012. Influence of region of provenance and climate factors on wood anatomical traits of Pinus nigra Arn. subsp. salzmannii. European Journal of Forest Research, 131, pp. 633–645. https://doi.org/10.1007/s10342-011-0537-x

Eyles, A., Bonello, P., Ganley, R. and Mohammed, C., 2010. Induced resistance to pests and pathogens in trees. New Phytologist, 185, pp. 893–908. https://doi.org/10.1111/j.1469-8137.2009.03127.x

Fett-Neto, A.G., 2012. Pine resin: biology, chemistry and applications. Research Signpost, T. C., Kerala, India.

Giri, S.K., Sharma, S.C., Prasad, N. and Pandey, S.K., 2018. Status of Resin Tapping and Scope of Improvement: A Review. Agricultural Mechanization in Asia, Africa & Latin America, 49, pp. 16–26.

Gutiérrez, J.T., 1976. Sitios experimentales sobre la producción de resina. Revista Ciencia Forestal, 1, pp. 21–29.

Hadiyane, A., Sulistyawa, E., Asharina, W.P. and Dungani, R., 2015. A Study on Production of Resin from Pinus merkusii Jungh. Et De Vriese in the Bosscha Observatory Area, West Java-Indonesia. Asian Journal of Plant Sciences, 14, pp. 89–93. https://doi.org/10.3923/ajps.2015.89.93

Hodges, A., 1995. Management strategies for a borehole resin production system in slash pine. University of Florida, Gainesville, Florida. p. 118.

Hodges, J.D., Elam, W.W. and Bluhm, D.R., 1981. Influence of Resin Duct Size and Number on Oleoresin Flow in the Southern Pines (No. SO-RN-266). U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans, LA. p. 3. https://doi.org/10.2737/SO-RN-266

Karademir, A., Aydemir, C., Yenidogan, S., Arman Kand?rmaz, E. and K?ter, R.G., 2020. The use of natural ( Pinus pinaster ) resin in the production of printing ink and the printability effect. Color Research & Application, 45, pp. 1170–1178. https://doi.org/10.1002/col.22534

Krekling, T., Franceschi, V.R., Berryman, A.A. and Christiansen, E., 2000. The structure and development of polyphenolic parenchyma cells in Norway spruce (Picea abies) bark. Flora, 195, pp. 354–369. https://doi.org/10.1016/S0367-2530(17)30994-5

Lai, M., Dong, L., Yi, M., Sun, S., Zhang, Y., Fu, L., Xu, Z., Lei, L., Leng, C. and Zhang, L., 2017. Genetic Variation, Heritability and Genotype × Environment Interactions of Resin Yield, Growth Traits and Morphologic Traits for Pinus elliottii at Three Progeny Trials. Forests, 8, p. 409. https://doi.org/10.3390/f8110409

Langenheim, J.H., 2003. Plant resins: chemistry, evolution, ecology, and ethnobotany. Timber Press, Portland, OR. p. 586.

Li, Y., Sun, H., De Paula Protásio, T., Hein, P.R.G. and Du, B., 2022. The mechanisms and prediction of non-structural carbohydrates accretion and depletion after mechanical wounding in slash pine (Pinus elliottii) using near-infrared reflectance spectroscopy. Plant Methods, 18, p. 107. https://doi.org/10.1186/s13007-022-00939-2

Lin, J., Hu, Y., He, X. and Ceulemans, R., 2002. Systematic survey of resin canals in pinaceae. Belgian Journal of Botany, 135, pp. 3–14.

Loewen, B., 2005. Resinous Paying Materials in the French Atlantic, AD 1500-1800. History, Technology, Substances. The International Journal Nautical Archaeology, 34, pp. 238–252. https://doi.org/10.1111/j.1095-9270.2005.00057.x

López-Álvarez, Ó., Zas, R. and Marey-Perez, M., 2023. Resin tapping: A review of the main factors modulating pine resin yield. Industrial Crops and Products, 202, p. 117105. https://doi.org/10.1016/j.indcrop.2023.117105

López?Goldar, X., Villari, C., Bonello, P., Borg?Karlson, A.K., Grivet, D., Sampedro, L. and Zas, R., 2019. Genetic variation in the constitutive defensive metabolome and its inducibility are geographically structured and largely determined by demographic processes in maritime pine. Journal of Ecology, 107, pp. 2464–2477. https://doi.org/10.1111/1365-2745.13159

López-Villamor, A., Zas, R., Pérez, A., Cáceres, Y., Nunes Da Silva, M., Vasconcelos, M., Vázquez-González, C., Sampedro, L. and Solla, A., 2021. Traumatic resin ducts induced by methyl jasmonate in Pinus spp. Trees, 35, pp. 557–567. https://doi.org/10.1007/s00468-020-02057-9

Luan, Q., Diao, S., Sun, H., Ding, X. and Jiang, J., 2022. Prediction and Comparisons of Turpentine Content in Slash Pine at Different Slope Positions Using Near-Infrared Spectroscopy. Plants, 11, p. 914. https://doi.org/10.3390/plants11070914

Lukmandaru, G., Amri, S., Sunarta, S., Listyanto, T., Pujiarti, R. and Widyorini, R. 2021. The effect of stimulants and environmental factors on resin yield of Pinus merkusii tapping. BioResources, 16(1). pp. 163–175. https://doi.org/10.15376/biores.16.1.163-175

Martínez-Chamorro, E., 2017. Revisión de las primeras experiencias de resinación en Galicia (1950-1970). Recursos Rurais, 12, pp. 13-22. https://doi.org/10.15304/rr.id4499

Mata, N.T., Villanueva, S. and Henríquez, M., 2018. Trend study: Applications of Colophony (Rosin) and its Derivatives. Revista Ingeniería UC, 25(3), pp. 325-337.

McReynolds, R.D., 1971. Heritability and Seasonal Changes in Viscosity of Slash Pine Oleoresin. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, p. 4.

Mergen, F., Hoekstra, P.E. and Echols, R.M., 1955. Genetic Control of Oleoresin Yield and Viscosity in Slash Pine. Forest Science, 1, pp. 19-30.

Mordor Intelligence. 2024. Tamaño del mercado de productos químicos de pino y análisis de participación: tendencias y pronósticos de crecimiento (2025-2030). Disponible en: https://www.mordorintelligence.ar/industry-reports/pine-chemicals-market [Consultado en 10 Septiembre 2025].

Muñoz-Flores, H.J., Hernández-Ramos, J., Sáenz-Reyes, J.T., Reynoso-Santos, R. y Barrera-Ramírez, R. 2022. Modelos predictivos de producción de resina en Pinus pseudostrobus Lindl., en Michoacán, México. Revista Mexicana de Ciencias Forestales, 13(73), pp. 128-154. https://doi.org/10.29298/rmcf.v13i73.1188

Munro-Rojas, A., 2011. Una industria con aroma a bosque: la resina de pino en Michoacán. Revista C+TEC, 5,

Neis, F.A., De Costa, F., De Almeida, M.R., Colling, L.C., De Oliveira Junkes, C.F., Fett, J.P. and Fett-Neto, A.G., 2019a. Resin exudation profile, chemical composition, and secretory canal characterization in contrasting yield phenotypes of Pinus elliottii Engelm. Industrial Crops and Products, 132, pp. 76–83. https://doi.org/10.1016/j.indcrop.2019.02.013

Neis, F.A., De Costa, F., De Araújo, A.T., Fett, J.P. and Fett-Neto, A.G., 2019b. Multiple industrial uses of non-wood pine products. Industrial Crops and Products, 130, pp. 248–258. https://doi.org/10.1016/j.indcrop.2018.12.088

Ningsih, L.A., Setiawan, I., Syarif, T., Nurdjannah, N., Ifa, L., Aiah, I.N. and Kusuma, H.S. 2023. Pine-to-Bioenergy: potential of pine sap as adhesive and pine lower biomass waste in the production of biobriquettes. Fuel, 350, p. 128872. https://doi.org/10.1016/j.fuel.2023.128872

Ochoa, J.F., 2008. Costos estimados para una industria resinera. Tesis de Licenciatura. Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México. p. 153.

Ortuño-Perez, S.F., Garcia-Robredo, F., Ayuga Tellez, E. and Fullana Belda, C., 2013. Effects of the crisis in the resin sector on the demography of rural municipalities in Spain. Forest systems, 22, pp. 39–46. https://doi.org/10.5424/fs/2013221-02403

Palacios-Vázquez, A.L., Maza-Villalobos, S., 2022. Resina: El oro líquido. Saber más, no. 62, pp. 1–5.

Parham, M.R., 1976. Stimulation of oleoresin yield in conifers. Outlook on Agriculture, 9(2), pp. 76–81. https://doi.org/10.1177/003072707600900207

Pari, G., Eiyanti, L., Darmawan, S., Saputra, N.A., Hendra, D., Adam, J. and Efendi, R. 2023. Initial ignition time and caloriic value enhancement of briquette with added pine resin. Journal of the Korean Wood Science and Technology, 51, pp. 207–221. https://doi.org/10.5658/WOOD.2023.51.3.207

Pavon, C., Aldas, M., Hernández?Fernández, J. and López?Martínez, J., 2022. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. Journal of Applied Polymer Science, 139(9), p. 51734. https://doi.org/10.1002/app.51734

Phillips, M.A. and Croteau, R.B., 1999. Resin-based defenses in conifers. Trends in Plant Science, 4, pp. 184–190. https://doi.org/10.1016/S1360-1385(99)01401-6

Pinillos, F.H., Picardo Nieto, Á., Allúe, M. and Camacho, A., 2009. La resina: herramienta de conservación de nuestros pinares. CESEFOR, Gráficas Ochoa Soria, S.L. p. 78.

Puente-Villegas, S.M., Moreno-González, V., Labarga Varona, D., Martínez Vera, E. and Acebes Arranz, J.L., 2017. El hombre y la resina de pino: desde su uso pasado hasta la actualidad con especial atención en España. AmbioCiencias, 15, pp. 21–30.

Qaderi, M.M., Martel, A.B. and Dixon, S.L. 2019. Environmental factors influence plant vascular system and water regulation. Plants, 8(3), p. 65. https://doi.org/10.3390/plants8030065

Reyes-Ramos, A., Cruz De León, J., Martínez-Palacios, A., Lobit, P.C.M., Ambríz-Parra, J.E. and Sánchez-Vargas, N.M., 2019. Caracteres ecológicos y dendrométricos que influyen en la producción de resina en Pinus oocarpa de Michoacán, México. Madera y Bosques, 25, p. e2511414. https://doi.org/10.21829/myb.2019.2511414

Rigling, A., Brühlhart, H., Bräker, O.U., Forster, T. and Schweingruber, F.H., 2003. Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. Forest Ecology and Management, 175, pp. 285–296. https://doi.org/10.1016/S0378-1127(02)00136-6

Rissanen, K., Hölttä, T., Bäck, J., Rigling, A., Wermelinger, B. and Gessler, A., 2021. Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown Scots pine. Environmental and Experimental Botany, 185, p. 104410. https://doi.org/10.1016/j.envexpbot.2021.104410

Rissanen, K., Hölttä, T., Barreira, L.F.M., Hyttinen, N., Kurtén, T. and Bäck, J., 2019. Temporal and Spatial Variation in Scots Pine Resin Pressure and Composition. Frontiers in Forests and Global Change, 2, p. 23. https://doi.org/10.3389/ffgc.2019.00023

Rissanen, K., Hölttä, T., Vanhatalo, A., Aalto, J., Nikinmaa, E., Rita, H. and Bäck, J., 2016. Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest. Plant Cell & Environment, 39, pp. 527–538. https://doi.org/10.1111/pce.12637

Rojas-Rodríguez, G., Meza-Colín, J., Munro, A., García-Moreno, T., Morales-Hernández, F., Virgen-Ortiz, J.J., Salvador-Hernández, J.L., Rodríguez-García, G., del Río, R.E., Ramírez-Briones, E. and Gómez-Hurtado, M.A., 2025. Dynamics on resin production from Pinus pringlei and Pinus devoniana var. cornuta using chemical?stimulation strategy. Brazilian Journal of Botany, 48, pp. 1-14. https://doi.org/10.1007/s40415-025-01081-8

Rodrigues, K.C.S. and Fett-Neto, A.G., 2009. Oleoresin yield of Pinus elliottii in a subtropical climate: Seasonal variation and effect of auxin and salicylic acid-based stimulant paste. Industrial Crops and Products, 30, pp. 316–320. https://doi.org/10.1016/j.indcrop.2009.06.004

Rodrigues-Honda, K.C.D.S., Junkes, C.F.D.O., Lima, J.C.D., Waldow, V.D.A., Rocha, F.S., Sausen, T.L., Bayer, C., Talamini, E. and Fett-Neto, A.G., 2023. Carbon Sequestration in Resin-Tapped Slash Pine (Pinus elliottii Engelm.) Subtropical Plantations. Biology, 12, p. 324. https://doi.org/10.3390/biology12020324

Rodríguez-García, A., López, R., Martín, J.A., Pinillos, F. and Gil, L., 2014. Resin yield in Pinus pinaster is related to tree dendrometry, stand density and tapping-induced systemic changes in xylem anatomy. Forest Ecology and Management, 313, pp. 47–54. https://doi.org/10.1016/j.foreco.2013.10.038

Rodríguez-Roque, J., Serrada, R., Lucas, J.A., Alejano, R., del Río, M. and Torres, E., 2008. Selvicultura de Pinuspinaster Ait. subsp. mesogeensis Fieschi & Gaussen. Compendio de Selvicultura Aplicada en España. INIA, pp. 399–430.

Rojas, D., Echevarria, M., Espinosa, E. and Pelegrín, A., 2023. Procedimiento para plantear la cadena de valor de la resina de pino en la gestión contable. Actualidad Contable FACES, 1, pp. 128–140. https://doi.org/10.53766/ACCON/2023.01.46.08

Sampedro, L., Moreira, X., Llusia, J., Penuelas, J. and Zas, R., 2010. Genetics, phosphorus availability, and herbivore-derived induction as sources of phenotypic variation of leaf volatile terpenes in a pine species. Journal of Experimental Botany, 61, pp. 4437–4447. https://doi.org/10.1093/jxb/erq246

SEMARNAT, 2018. Anuario estadístico de la producción forestal 2018. SEMARNAT, p. 298.

Sood, Y., Bharti, P.K. and Gupta, R.K., 2019. Correlation and Regression Studies on Estimation of Resin Yield in Pinus roxburghii. Indian Journal of Pure & Applied Biosciences, 7, pp. 63–66. https://doi.org/10.18782/2582-2845.7438

Tadesse, W., Auñón, F.J., Pardos, J.A., Gil, L. and Alía, R., 2001. Evaluación precoz de la producción de miera en Pinus pinaster Ait. Investigación Agraria: Sistemas y Recursos Forestales, 10(1), pp. 141–150.

Telleria-Mata, N., Villanueva, S. and Henriquez, M., 2019. Obtención de trementina y colofonia a partir de la resina de pino. Estado del arte. Agroindustria, Sociedad y Ambiente, 1(12), pp. 26–42.

Toledo, A.A.A. and López, Y.A.C., 2006. Resina: Entre la madera y el desarrollo comunitario integral. Biodiversitas, 65, pp. 1–7.

Tomusiak, R. and Magnuszewski, M., 2009. Effect of resin tapping on radial increments os Scots pine (Pinus sylvestris L.). TRACE, 7, pp. 151–157.

Touza, R., Lema, M. and Zas, R., 2021. Timing of resin-tapping operations in maritime pine forests in Northern Spain. Forest Systems, 30(3), p. eSC05. https://doi.org/10.5424/fs/2021303-18414

Trapp, S. and Croteau, R., 2001. Defensive resin biosynthesis in conifers. Annual Review of Plant Biology, 52, pp. 689–724. https://doi.org/10.1146/annurev.arplant.52.1.689

Vázquez-González, C., López-Goldar, X., Alía, R., Bustingorri, G., Lario, F.J., Lema, M., De La Mata, R., Sampedro, L., Touza, R. and Zas, R., 2021. Genetic variation in resin yield and covariation with tree growth in maritime pine. Forest Ecology and Management, 482, p. 118843. https://doi.org/10.1016/j.foreco.2020.118843

Vázquez-González, C., Zas, R., Erbilgin, N., Ferrenberg, S., Rozas, V. and Sampedro, L., 2020. Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. Tree Physiology, 40(10), pp. 1313–1326. https://doi.org/10.1093/treephys/tpaa064

Velasco-García, M.V. and Hernández-Hernández, A., 2024. Geographic and Climatic Variation in Resin Components and Quality of Pinus oocarpa in Southern Mexico Provenances. Plants, 13(13), p. 1755. https://doi.org/10.3390/plants13131755

Westbrook, J.W., Walker, A.R., Neves, L.G., Munoz, P., Resende, M.F.R., Neale, D.B., Wegrzyn, J.L., Huber, D.A., Kirst, M., Davis, J.M. and Peter, G.F., 2015. Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments, ages, and populations. New Phytologist, 205(2), pp. 627–641. https://doi.org/10.1111/nph.13074

Wu, H. and Hu, Z., 1997. Comparative anatomy of resin ducts of the Pinaceae. Trees, 11, pp. 135–143.

Zas, R., Quiroga, R., Touza, R., Vázquez-González, C., Sampedro, L. and Lema, M., 2020. Resin tapping potential of Atlantic maritime pine forests depends on tree age and timing of tapping. Industrial Crops and Products, 157, p. 112940. https://doi.org/10.1016/j.indcrop.2020.112940

Zeng, X., Ni, P., Li, Y., Wang, W., Sun, S., Wang, Y., Chang, Y., Tao, X., Hou, M. and Liu, X., 2021. Short-term resin tapping activities had a minor influence on physiological responses recorded in the tree-ring isotopes of Chinese pine (Pinus tabuliformis). Dendrochronologia, 70, p. 125895. https://doi.org/10.1016/j.dendro.2021.125895




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.62456

DOI: http://dx.doi.org/10.56369/tsaes.6245



Copyright (c) 2025 Salvador Lozano Trejo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.