Effect of foliar application of hydrogen peroxide and compost on the initial growth of corn seedlings (Zea mays L.)]
Abstract
Keywords
Full Text:
PDFReferences
Bahin, E., Bailly, C., Sotta, B., Kranner, I., Corbineau, F. and Leymarie, J., 2011. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant, Cell & Environment, 34(6), pp. 980-993. https://doi.org/10.1111/j.1365-3040.2011.02298.x
Cardoza-Viera, A., Arévalo-Valladolid, D., Javier-Alva, J., Peña-Castillo, R., Chanduví-García, R., Quiroz-Calderón, M. and Morales-Pizarro, A., 2024. Sustratos orgánicos alternos en la germinación y crecimiento inicial de plántulas de maíz (Zea mays L.) en condiciones de vivero. Terra Latinoamericana, 42, pp. 1-11. e1867. https://doi.org/10.28940/terra.v42i0.1867
Chanduvi-García, R., Sandoval-Panta, M.A., Peña-Castillo, R., Alva, J.J., Álvarez, L.Á., Quiroz-Calderón, M.V. and Morales-Pizarro, D.A., 2023. Biofertilizante y su Correlación entre Parámetros Productivos y de Calidad en Limón Sutil (Citrus aurantifolia Swingle). Terra Latinoamericana, 41. https://doi.org/10.28940/terra.v41i0.1685
Chen, Z., Gu, Q., Yu, X., Huang, L., Xu, S., Wang, R. and Shen, W., 2018. Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Annals of botany, 121(6), pp. 1127-1136. https://doi.org/10.1093/aob/mcx207
Da Silva, M.K.F., Siqueira, D.P., de Carvalho, G.C.M.W., de Deus Silva, R., da Rocha Silva, R.M. and Barroso, D.G., 2022. Hydrogen peroxide enhanced indole-3-butyric acid effects on Cordia trichotoma adventitious rooting. Rhizosphere, 22, p. 100533. https://doi.org/10.1016/j.rhisph.2022.100533
Deng, Y., Wang, C., Wang, N., Wei, L., Li, W., Yao, Y. and Liao, W., 2019. Roles of small-molecule compounds in plant adventitious root development. Biomolecules, 9(9), p. 420. https://doi.org/10.3390/biom9090420
Dolatabadian, A. and Sanavy, S., 2008. Effect of the ascorbic acid, pyridoxine and hydrogen peroxide treatments on germination, catalase activity, protein and malondialdehyde content of three oil seeds Notulae Botanicae. Horti Agrobotanici Cluj-Napoca, 36(2), pp. 61-66. http://dx.doi.org/10.15835/nbha36270
El-Sayed, A., Mustafa, H.H., Bakr, B.M.M., Abdelraouf, R.E., Ragab, R. and Mansour, N.E., 2023. Improving mango production using partial root drying technique and organic fertilisation: Field and modeling study. Water Science, 37(1), pp. 371-388. https://doi.org/10.1080/23570008.2023.2278999
Galecio-Julca, M., Neira-Ojeda, M., Chanduvi-García, R., Peña-Castillo, R., Álvarez-Bernaola, L.A., Granda-Wong, C. and Morales-Pizarro, A., 2023. Efecto de los microorganismos eficientes nativos y compost en tres pisos altitudinales en el cultivo de quinua (Chenopodium quinoa) variedad INIA 415-Pasankalla. Terra Latinoamericana, 41, pp. 1-12. https://doi.org/10.28940/terra.v41i0.162
GBIF (Global Biodiversity Information Facility)., 2023. Zea mays L. Available at: https://www.gbif.org/es/species/5290052
Giberti, S., Funck, D. and Forlani, G., 2014. ?1?pyrroline?5?carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co?substrate. New Phytologist, 202(3), pp. 911-919. https://doi.org/10.1111/nph.12701
FAO (Food and Agriculture Organization). 2024. Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize (Consultado 27 de octubre 2024).
Freixes, S., Thibaud, M. C., Tardieu, F. and Muller, B., 2002. Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant, Cell & Environment, 25(10), pp. 1357-1366. https://doi.org/10.1046/j.1365-3040.2002.00912.x
Hameed, A., Farooq, S., Iqbal, N. and Arshad, R., 2004. Influence of exogenous application of hydrogen peroxide on root and seedling growth on wheat (Triticum aestivum L.). International Journal of Agriculture and Biology, 6(2), pp. 366-369.
Htet, Y., Lu, Z., Trauger, S.A. and Tennyson, A.G., 2019. Hydrogen peroxide as a hydride donor and reductant under biologically relevant conditions. Chemical Science, 10, pp. 2025–2033. https://doi.org/10.1039/C8SC05418E
Huang, Y.M., Chen, Y.Y., Zou, Y.N. and Wu, Q.S., 2014. Integrated effect of arbuscular mycorrhizal fungi and hydrogen peroxide on the root system of trifoliate orange seedlings. Science Asia, 40, pp. 106-112. http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.106
Hussain, A., Zahir, Z.A, Ditta, A., Tahir, M.U, Ahmad, M., Mumtaz, M.Z. and Hussain, S., 2019. Production and Implication of Bio-Activated Organic Fertilizer Enriched with Zinc-Solubilizing Bacteria to Boost up Maize (Zea mays L.) Production and Biofortification under Two Cropping Seasons. Agronomy, 10 (1), p. 39. https://doi.org/10.3390/agronomy10010039
Khan, T.A., Yusuf, M. and Fariduddin, Q., 2015. Seed treatment with H2O2 modifies net photosynthetic rate and antioxidant system in mung bean (Vigna radiata L. Wilczek) plants. Israel Journal of Plant Sciences, 62(3), 167-175. https://doi.org/10.1080/07929978.2015.1060806
Khandaker, M. M., Boyce, A. N. and Osman, N., 2012. The influence of hydrogen peroxide on the growth, development and quality of wax apple (Syzygium samarangense, [Blume] Merrill & LM Perry var. jambu madu) fruits. Plant Physiology and Biochemistry, 53, pp. 101-110. https://doi.org/10.1016/j.plaphy.2012.01.016
Kärkönen, A. and Koutaniemi, S., 2010. Lignin biosynthesis studies in plant tissue cultures. Journal of integrative plant biology, 52(2), pp.176-185. https://doi.org/10.1111/j.1744-7909.2010.00913.x
Li, S., Xue, L., Xu, S., Feng, H. and An, L., 2007. Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regulation, 52, pp. 173-180. https://doi.org/10.1007/s10725-007-9188-9.
Ma?kowski, E., Sitko, K., Szopi?ski, M., Giero?, ?., Pogrzeba, M., Kalaji, H. M. and Ziele?nik-Rusinowska, P., 2020. Hormesis in plants: The role of oxidative stress, auxins and photosynthesis in corn treated with Cd or Pb. International Journal of Molecular Sciences, 21(6), p. 2099. https://doi.org/10.3390/ijms21062099
Martínez-Rengel, A., Torres-Cedeño, M., Álvarez-Morejón, C. and Rentería-Valencia, N., 2021. Valoración de experto sobre la germinación de la semilla de maíz. Alfa Revista de Investigación en Ciencias Agronómicas y Veterinaria, 5(15), pp. 34-44. https://doi.org/10.33996/revistaalfa.v5i15.127
Merino-Valdés, M., Andrés-Meza, P., Leyva-Ovalle, O. R., López-Sánchez, H., Murguía-González, J., Núñez-Pastrana, R. and Luis, J., 2018. Influencia de tratamientos pregerminativos en semillas de chile manzano (Capsicum pubescens Ruiz & Pav.). Acta Agronómica, 67(4), pp. 531-537. https://doi.org/10.15446/acag.v67n4.73426
Morales-Pizarro, A., Javier-Alva, J., Álvarez, L.A., Mayta-Obos, R., Aguilar-Anccota, R., Peña-Castillo, R. and Lindo-Seminario, D., 2022. Isolation, identification and in vitro evaluation of native isolates of Bacillus, Trichoderma and Streptomyces with potential for the biocontrol of grapevine trunk fungi. Tropical and Subtropical Agroecosystems, 25, p. 086. http://www.doi.org/10.56369/tsaes.4206
Morales Pizarro, A., Rondoy-Castro, D., Escobedo-Huancas, P., Durante-Montejo, E., Veramatus-Mendoza, A., Juárez-Vílchez, J., Morocho-Romero, H., Chanduvi-García, R., Quiroz-Calderón, M., Calero-Merino, M. and Peña-Castillo, R., 2025. Dose and imbibition times of hydrogen peroxide in germination and initial growth of cotton (Gossypium barbadense L.)]. Tropical and Subtropical Agroecosystems, 28(1), p. 013. http://dx.doi.org/10.56369/tsaes.5660
Morocho-Romero, H., Peña-Castillo, R., Chanduvi-García, R., Vilchez-Navarro, S., Quiroz-Calderón, M., Calero-Merino, M. and Pizarro, D.A.M., 2024. Influence of organic fertilization on the fruit morphology and production of mango (Mangifera indica L.) var. kent. Tropical and Subtropical Agroecosystems, 27(3), p. 137. http://www.doi.org/10.56369/TSAES.5606
Nazir, F., Fariduddin, Q. and Khan, T.A., 2020. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere, 252, p. 126486. https://doi.org/10.1016/j.chemosphere.2020.126486
Pérez-Peralta, P.J., Ferrera-Cerrato, R., Alarcón, A., Delgadillo-Martínez, J., Hernández-Melchor, D.J. and Cortés-Pérez, S., 2024. Potencial de bacterias asociadas a meliponinos en la promoción del crecimiento de lechuga (Lactuca Sativa L.). Chilean Journal of Agricultural & Animal Sciences, 40(2), pp. 283-300. https://doi.org/10.29393/CHJAAS40-24LSPC60024
Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P. and Levine, A., 1999. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiology, 119(3), pp. 849-858. https://doi.org/10.1104/pp.119.3.849
Ramzani, P.M., Shan, L., Anjum, S., Khan, W.D., Ronggui, H., Iqbal, M. and Kausar. S., 2017. Improved quinoa growth. physiological response. and seed nutritional quality in three soils having dif ferent stresses by the application of acidified biochar and compost. Plant Physiology and Biochemistry, 116, pp. 127-138. https://doi.org/10.1016/j.plaphy.2017.05.003
Rejeb, K.B., Abdelly, C., and Savouré, A., 2014. How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, pp. 278-284. https://doi.org/10.1016/j.plaphy.2014.04.007
SIAE (Sistema Integrado de Estadística Agraria)., 2024. Valor de la producción (VBP) agropecuaria- a nivel de productos. Consultada el 27 de octubre, 2024. Available at: https://app.powerbi.com/view?r=eyJrIjoiY2NlOTFkOTMtMjgxYy00NThjLWE0MjUtNGQwMDA0YTY1Nzc1IiwidCI6IjdmMDg0NjI3LTdmNDAtNDg3OS04OTE3LTk0Yjg2ZmQzNWYzZiJ9&pageName=ReportSectioncdcb240117bc1370448b
Schopfer, P., 1996. Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Plants, 199(1), pp. 43-49. https://doi.org/10.1007/BF00196879
Vilchez-Navarro, S., Morales-Pizarro, A., Morocho-Romero, H., Casas-Niño, S., Cárdenas-Huamán, G., Velarde-Apaza, L.D. and Lozano-Isla, F., 2025. Biostimulant-induced enhancement of germination and early seedling growth in creole and hybrid purple maize (Zea mays L.). Research on Crops, 26(3), pp. 444–457. https://doi.org/10.31830/2348-7542.2025.ROC-1223
Walter, A. and Nagel, K.A., 2006. Root growth reacts rapidly and more pronounced than shoot growth towards increasing light intensity in tobacco seedlings. Plant signaling & behavior, 1(5), pp. 225-226. https://doi.org/10.4161/psb.1.5.3447
Yang, S. L., Lan, S. S. and Gong, M., 2009. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. Journal of plant physiology, 166(15), pp. 1694-1699. https://doi.org/10.1016/j.jplph.2009.04.006
Xiong, J., Yang, Y., Fu, G. and Tao, L., 2015. Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips. New Phytologist, 206(1), pp. 118-126. https://doi.org/10.1111/nph.13285
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.61538
DOI: http://dx.doi.org/10.56369/tsaes.6153
Copyright (c) 2025 Davies Arturo Morales Pizarro, Daniel Mena-Acha, Esteven Atarama-Castillo, Roger Chanduvi-García, Marcos Quiroz-Calderón, Ricardo Peña-Castillo, Mariano Calero-Merino, Miguel Galecio-Julca, Ana Montero-Salazar, Sergio Copa Vizcarra

This work is licensed under a Creative Commons Attribution 4.0 International License.