Effect of foliar application of hydrogen peroxide and compost on the initial growth of corn seedlings (Zea mays L.)]

Daniel Mena-Acha, Steven Atarama-Castillo, Roger Chanduvi-García, Marcos Quiroz-Calderón, Ricardo Peña-Castillo, Mariano Calero-Merino, Miguel Galecio-Julca, Ana Montero-Salazar, Sergio Copa Vizcarra, Arturo Morales Pizarro

Abstract


Background: Corn is a cereal of great importance in human and animal food; which, guarantees food security and global economy. In Peru, corn is cultivated under conventional agriculture that is dependent on agrochemicals. Objective: To evaluate the combined effect of different foliar doses of hydrogen peroxide and compost on the initial development of corn seedlings. Methodology: Commercial hydrogen peroxide (CHP) (H2O2 at a concentration of 3 g 100 mL-1) and compost-C were evaluated in the treatments:  T0 (control-conventional), T1 (C-2.5% CHP), T2 (C-5% CHP), T3 (C-10% CHP). The morphometric variables were: plant height (PH), root length (RL), number of leaves (NL) and stem diameter (SD) and biomass: aerial fresh weight (AFW), aerial dry weight (ADW), root fresh weight (RFW), root dry weight (RDW) at 26 and 39 DAP (days after planting), Brix grades (°B) were evaluated on the last date. Results: T2 and T3 treatments significantly improved RL and NL at 26 DAP; however, at 39 DAP, T2 increased PH, AFW, RFW, ADW, RDW and °B; and T3 increased RL. The highest positive correlation between variables was present at 39 DAP with respect to 36 DAP. Implications: The combined effect of “CHP” and “C” improves plant performance through a good distribution of organic carbon (glucids) obtained from carbon dioxide fixation and reduces fertilizer use. Conclusion: Treatments T2 and T3 significantly increased the variables under study at 39 DAP. Likewise, the positive correlation between the variables improved.

Keywords


stimulants; growth; yield; vegetables crops.

Full Text:

PDF

References


Bahin, E., Bailly, C., Sotta, B., Kranner, I., Corbineau, F. and Leymarie, J., 2011. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant, Cell & Environment, 34(6), pp. 980-993. https://doi.org/10.1111/j.1365-3040.2011.02298.x

Cardoza-Viera, A., Arévalo-Valladolid, D., Javier-Alva, J., Peña-Castillo, R., Chanduví-García, R., Quiroz-Calderón, M. and Morales-Pizarro, A., 2024. Sustratos orgánicos alternos en la germinación y crecimiento inicial de plántulas de maíz (Zea mays L.) en condiciones de vivero. Terra Latinoamericana, 42, pp. 1-11. e1867. https://doi.org/10.28940/terra.v42i0.1867

Chanduvi-García, R., Sandoval-Panta, M.A., Peña-Castillo, R., Alva, J.J., Álvarez, L.Á., Quiroz-Calderón, M.V. and Morales-Pizarro, D.A., 2023. Biofertilizante y su Correlación entre Parámetros Productivos y de Calidad en Limón Sutil (Citrus aurantifolia Swingle). Terra Latinoamericana, 41. https://doi.org/10.28940/terra.v41i0.1685

Chen, Z., Gu, Q., Yu, X., Huang, L., Xu, S., Wang, R. and Shen, W., 2018. Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Annals of botany, 121(6), pp. 1127-1136. https://doi.org/10.1093/aob/mcx207

Da Silva, M.K.F., Siqueira, D.P., de Carvalho, G.C.M.W., de Deus Silva, R., da Rocha Silva, R.M. and Barroso, D.G., 2022. Hydrogen peroxide enhanced indole-3-butyric acid effects on Cordia trichotoma adventitious rooting. Rhizosphere, 22, p. 100533. https://doi.org/10.1016/j.rhisph.2022.100533

Deng, Y., Wang, C., Wang, N., Wei, L., Li, W., Yao, Y. and Liao, W., 2019. Roles of small-molecule compounds in plant adventitious root development. Biomolecules, 9(9), p. 420. https://doi.org/10.3390/biom9090420

Dolatabadian, A. and Sanavy, S., 2008. Effect of the ascorbic acid, pyridoxine and hydrogen peroxide treatments on germination, catalase activity, protein and malondialdehyde content of three oil seeds Notulae Botanicae. Horti Agrobotanici Cluj-Napoca, 36(2), pp. 61-66. http://dx.doi.org/10.15835/nbha36270

El-Sayed, A., Mustafa, H.H., Bakr, B.M.M., Abdelraouf, R.E., Ragab, R. and Mansour, N.E., 2023. Improving mango production using partial root drying technique and organic fertilisation: Field and modeling study. Water Science, 37(1), pp. 371-388. https://doi.org/10.1080/23570008.2023.2278999

Galecio-Julca, M., Neira-Ojeda, M., Chanduvi-García, R., Peña-Castillo, R., Álvarez-Bernaola, L.A., Granda-Wong, C. and Morales-Pizarro, A., 2023. Efecto de los microorganismos eficientes nativos y compost en tres pisos altitudinales en el cultivo de quinua (Chenopodium quinoa) variedad INIA 415-Pasankalla. Terra Latinoamericana, 41, pp. 1-12. https://doi.org/10.28940/terra.v41i0.162

GBIF (Global Biodiversity Information Facility)., 2023. Zea mays L. Available at: https://www.gbif.org/es/species/5290052

Giberti, S., Funck, D. and Forlani, G., 2014. ?1?pyrroline?5?carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co?substrate. New Phytologist, 202(3), pp. 911-919. https://doi.org/10.1111/nph.12701

FAO (Food and Agriculture Organization). 2024. Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize (Consultado 27 de octubre 2024).

Freixes, S., Thibaud, M. C., Tardieu, F. and Muller, B., 2002. Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant, Cell & Environment, 25(10), pp. 1357-1366. https://doi.org/10.1046/j.1365-3040.2002.00912.x

Hameed, A., Farooq, S., Iqbal, N. and Arshad, R., 2004. Influence of exogenous application of hydrogen peroxide on root and seedling growth on wheat (Triticum aestivum L.). International Journal of Agriculture and Biology, 6(2), pp. 366-369.

Htet, Y., Lu, Z., Trauger, S.A. and Tennyson, A.G., 2019. Hydrogen peroxide as a hydride donor and reductant under biologically relevant conditions. Chemical Science, 10, pp. 2025–2033. https://doi.org/10.1039/C8SC05418E

Huang, Y.M., Chen, Y.Y., Zou, Y.N. and Wu, Q.S., 2014. Integrated effect of arbuscular mycorrhizal fungi and hydrogen peroxide on the root system of trifoliate orange seedlings. Science Asia, 40, pp. 106-112. http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.106

Hussain, A., Zahir, Z.A, Ditta, A., Tahir, M.U, Ahmad, M., Mumtaz, M.Z. and Hussain, S., 2019. Production and Implication of Bio-Activated Organic Fertilizer Enriched with Zinc-Solubilizing Bacteria to Boost up Maize (Zea mays L.) Production and Biofortification under Two Cropping Seasons. Agronomy, 10 (1), p. 39. https://doi.org/10.3390/agronomy10010039

Khan, T.A., Yusuf, M. and Fariduddin, Q., 2015. Seed treatment with H2O2 modifies net photosynthetic rate and antioxidant system in mung bean (Vigna radiata L. Wilczek) plants. Israel Journal of Plant Sciences, 62(3), 167-175. https://doi.org/10.1080/07929978.2015.1060806

Khandaker, M. M., Boyce, A. N. and Osman, N., 2012. The influence of hydrogen peroxide on the growth, development and quality of wax apple (Syzygium samarangense, [Blume] Merrill & LM Perry var. jambu madu) fruits. Plant Physiology and Biochemistry, 53, pp. 101-110. https://doi.org/10.1016/j.plaphy.2012.01.016

Kärkönen, A. and Koutaniemi, S., 2010. Lignin biosynthesis studies in plant tissue cultures. Journal of integrative plant biology, 52(2), pp.176-185. https://doi.org/10.1111/j.1744-7909.2010.00913.x

Li, S., Xue, L., Xu, S., Feng, H. and An, L., 2007. Hydrogen peroxide involvement in formation and development of adventitious roots in cucumber. Plant Growth Regulation, 52, pp. 173-180. https://doi.org/10.1007/s10725-007-9188-9.

Ma?kowski, E., Sitko, K., Szopi?ski, M., Giero?, ?., Pogrzeba, M., Kalaji, H. M. and Ziele?nik-Rusinowska, P., 2020. Hormesis in plants: The role of oxidative stress, auxins and photosynthesis in corn treated with Cd or Pb. International Journal of Molecular Sciences, 21(6), p. 2099. https://doi.org/10.3390/ijms21062099

Martínez-Rengel, A., Torres-Cedeño, M., Álvarez-Morejón, C. and Rentería-Valencia, N., 2021. Valoración de experto sobre la germinación de la semilla de maíz. Alfa Revista de Investigación en Ciencias Agronómicas y Veterinaria, 5(15), pp. 34-44. https://doi.org/10.33996/revistaalfa.v5i15.127

Merino-Valdés, M., Andrés-Meza, P., Leyva-Ovalle, O. R., López-Sánchez, H., Murguía-González, J., Núñez-Pastrana, R. and Luis, J., 2018. Influencia de tratamientos pregerminativos en semillas de chile manzano (Capsicum pubescens Ruiz & Pav.). Acta Agronómica, 67(4), pp. 531-537. https://doi.org/10.15446/acag.v67n4.73426

Morales-Pizarro, A., Javier-Alva, J., Álvarez, L.A., Mayta-Obos, R., Aguilar-Anccota, R., Peña-Castillo, R. and Lindo-Seminario, D., 2022. Isolation, identification and in vitro evaluation of native isolates of Bacillus, Trichoderma and Streptomyces with potential for the biocontrol of grapevine trunk fungi. Tropical and Subtropical Agroecosystems, 25, p. 086. http://www.doi.org/10.56369/tsaes.4206

Morales Pizarro, A., Rondoy-Castro, D., Escobedo-Huancas, P., Durante-Montejo, E., Veramatus-Mendoza, A., Juárez-Vílchez, J., Morocho-Romero, H., Chanduvi-García, R., Quiroz-Calderón, M., Calero-Merino, M. and Peña-Castillo, R., 2025. Dose and imbibition times of hydrogen peroxide in germination and initial growth of cotton (Gossypium barbadense L.)]. Tropical and Subtropical Agroecosystems, 28(1), p. 013. http://dx.doi.org/10.56369/tsaes.5660

Morocho-Romero, H., Peña-Castillo, R., Chanduvi-García, R., Vilchez-Navarro, S., Quiroz-Calderón, M., Calero-Merino, M. and Pizarro, D.A.M., 2024. Influence of organic fertilization on the fruit morphology and production of mango (Mangifera indica L.) var. kent. Tropical and Subtropical Agroecosystems, 27(3), p. 137. http://www.doi.org/10.56369/TSAES.5606

Nazir, F., Fariduddin, Q. and Khan, T.A., 2020. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere, 252, p. 126486. https://doi.org/10.1016/j.chemosphere.2020.126486

Pérez-Peralta, P.J., Ferrera-Cerrato, R., Alarcón, A., Delgadillo-Martínez, J., Hernández-Melchor, D.J. and Cortés-Pérez, S., 2024. Potencial de bacterias asociadas a meliponinos en la promoción del crecimiento de lechuga (Lactuca Sativa L.). Chilean Journal of Agricultural & Animal Sciences, 40(2), pp. 283-300. https://doi.org/10.29393/CHJAAS40-24LSPC60024

Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P. and Levine, A., 1999. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiology, 119(3), pp. 849-858. https://doi.org/10.1104/pp.119.3.849

Ramzani, P.M., Shan, L., Anjum, S., Khan, W.D., Ronggui, H., Iqbal, M. and Kausar. S., 2017. Improved quinoa growth. physiological response. and seed nutritional quality in three soils having dif ferent stresses by the application of acidified biochar and compost. Plant Physiology and Biochemistry, 116, pp. 127-138. https://doi.org/10.1016/j.plaphy.2017.05.003

Rejeb, K.B., Abdelly, C., and Savouré, A., 2014. How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, pp. 278-284. https://doi.org/10.1016/j.plaphy.2014.04.007

SIAE (Sistema Integrado de Estadística Agraria)., 2024. Valor de la producción (VBP) agropecuaria- a nivel de productos. Consultada el 27 de octubre, 2024. Available at: https://app.powerbi.com/view?r=eyJrIjoiY2NlOTFkOTMtMjgxYy00NThjLWE0MjUtNGQwMDA0YTY1Nzc1IiwidCI6IjdmMDg0NjI3LTdmNDAtNDg3OS04OTE3LTk0Yjg2ZmQzNWYzZiJ9&pageName=ReportSectioncdcb240117bc1370448b

Schopfer, P., 1996. Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Plants, 199(1), pp. 43-49. https://doi.org/10.1007/BF00196879

Vilchez-Navarro, S., Morales-Pizarro, A., Morocho-Romero, H., Casas-Niño, S., Cárdenas-Huamán, G., Velarde-Apaza, L.D. and Lozano-Isla, F., 2025. Biostimulant-induced enhancement of germination and early seedling growth in creole and hybrid purple maize (Zea mays L.). Research on Crops, 26(3), pp. 444–457. https://doi.org/10.31830/2348-7542.2025.ROC-1223

Walter, A. and Nagel, K.A., 2006. Root growth reacts rapidly and more pronounced than shoot growth towards increasing light intensity in tobacco seedlings. Plant signaling & behavior, 1(5), pp. 225-226. https://doi.org/10.4161/psb.1.5.3447

Yang, S. L., Lan, S. S. and Gong, M., 2009. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. Journal of plant physiology, 166(15), pp. 1694-1699. https://doi.org/10.1016/j.jplph.2009.04.006

Xiong, J., Yang, Y., Fu, G. and Tao, L., 2015. Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips. New Phytologist, 206(1), pp. 118-126. https://doi.org/10.1111/nph.13285




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.61538

DOI: http://dx.doi.org/10.56369/tsaes.6153



Copyright (c) 2025 Davies Arturo Morales Pizarro, Daniel Mena-Acha, Esteven Atarama-Castillo, Roger Chanduvi-García, Marcos Quiroz-Calderón, Ricardo Peña-Castillo, Mariano Calero-Merino, Miguel Galecio-Julca, Ana Montero-Salazar, Sergio Copa Vizcarra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.