MESQUITE, PINE SAWDUST, AND ARBUSCULAR MYCORRHIZAL FUNGI: A STRATEGY FOR CYANIDE PHYTOREMEDIATION

Fernando Amilcar Solís-Domínguez, Aseneth Herrera-Martínez, Karyme Andrea Lepe Terrazas, María Guadalupe Rangel González, Rogelio Carrillo-González, Alicia Alcocer García

Abstract


Background: Heavy metals and cyanide compounds are common pollutants derived from mining activities. Cyanide can transform into hydrogen cyanide, a highly toxic substance for humans, and inhibits the growth of plants and microorganisms. If mining areas used as waste repositories remain without vegetation, pollutants remain exposed and can spread to other areas through wind or water. There is limited information on solutions that use plants and microorganisms to remediate cyanide-contaminated sites. Objective: To propose a strategy to adapt Prosopis sp. (mesquite) in a mining waste contaminated with 155 mg kg-1 of cyanide, using pine sawdust and an inoculant of arbuscular mycorrhizal fungi (AMF). Methodology: An experiment was conducted using 50 mL polypropylene tubes with the following treatments: mining waste (MT) and mining waste with 20% sawdust (MTS) as controls, along with the same treatments inoculated with mycorrhizae (MT-AMF and MTS-AMF). The experiment lasted for 60 days. pH, electrical conductivity (EC), and the number of bacteria in the substrate were measured, as well as the dry weight of the plants and the presence of mycorrhizal colonization. Results: Treatments that included pine sawdust and AMF showed healthy plants, decreased pH (from 7.82 to 7.15), reduced EC (from 6.25 to 4.71 mS cm-1), and significantly increased the number of bacteria. Implications: The combination of pine sawdust and arbuscular mycorrhizal fungi may facilitate the adaptation of Prosopis sp. in cyanide-contaminated mining soils, suggesting its potential as a bioremediation strategy. Conclusion: Pine sawdust and AMF can aid in adapting Prosopis sp. and represent a promising alternative for the recovery of cyanide-contaminated areas.

Keywords


Phytoremediation; cyanide; arbuscular mycorrhizal fungi

Full Text:

PDF

References


Bago B. and Azcon-Aguilar C.,1997. Changes in the rhizospheric pH induced by arbuscular mycorrhiza formation in onion (Allium cepa L). Z. Pflanzenernaehr. Bodenkd. 160, 333?339. https://doi.org/10.1002/jpln.19971600231

Carrillo G.R., Solís-Domínguez F.A., González C.M.C.A., Espinoza R.M.A., Herrera M.A. and López I. A., 2022. Residuos vegetales para reducir la movilidad de elementos potencialmente tóxicos y cianuro en residuos de mina. Encuentro de Expertos en Residuos Sólidos. Hacia una Cultura Cero Residuos. 15: 128-134. https://www.researchgate.net/publication/365556374_Residuos_vegetales_para_reducir_la_movilidad_de_elementos_potencialmente_toxicos_y_cianuro_en_residuos_de_mina#full-text

Deepika, S., Mittal, A. and Kothamasi, D., 2019. HCN?producing Pseudomonas protegens CHA0 affects intraradical viability of Rhizophagus irregularis in Sorghum vulgare roots. Journal of Basic Microbiology, 59, pp.1229–1237. https://doi.org/10.1002/jobm.201900364

Félix, R.J.A., Solís-Domínguez, F.A., González Chávez, M.C.A., Herrera-Martínez, A., Carrillo-González, R., Reyes, L.J.A., Ramírez-Hernández J. and López I.A. 2023. Hongos micorrízicos arbusculares: promotores del crecimiento en especies vegetales de interés agrícola bajo condiciones altamente salinas. Sociedad Mexicana de la Ciencia del Suelo, 4, pp.130-135.

Gerdemann, J.W. and Nicolson, T.H., 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46, pp.235–244. Available at; https://doi.org/10.1016/S0007-1536(63)80079-0

Hayes, S.M., White, S.A., Thompson, T.L., Maier, R.M., and Chorover, J. 2009. Changes in lead and zinc lability during weathering induced acidification of desert mine tailings: Coupling chemical and micro-scale analyses. Applied Geochemistry. 24, 2234-2245. https://doi.org/10.1016/j.apgeochem.2009.09.010

Hinsinger, P., Plassard, C., Tang, C. and Jaillard, B., 2003. Origins of root mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil. 248, 43?59. https://doi.org/10.1023/A:1022371130939

Landrigan, P.J., Fuller, R., Acosta, N.J.R., Adeyi, O., Arnold, R., Basu, N., Baldé, A.B., Bertollini, R., Bose-O’Reilly, S., Boufford, J.I., Breysse, P.N., Chiles, T., Mahidol, C., Coll-Seck, A.M., Cropper, M.L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K.V., McTeer, M.A., Murray, C.J.L., Ndahimananjara, J.D., Perera, F., Poto?nik, J., Preker, A.S., Ramesh, J., Rockström, J., Salinas, C., Samson, L.D., Sandilya, K., Sly, P.D., Smith, K.R., Steiner, A., Stewart, R.B., Suk, W.A., Van Schayck, O.C.P., Yadama, G.N., Yumkella, K. and Zhong, M., 2018. The Lancet Commission on pollution and health. The Lancet, 391, 10119, 462–512. https://doi.org/10.1016/s0140-6736(17)32345-0

Luo, L., Guo, M., Wang, E., Yin, C., Wang, Y., He, H. and Zhao C., 2022. Effects of mycorrhiza and hyphae on the response of soil microbial community to warming in eastern Tibetan Plateau. Science of the Total Environment, 837, 155498. https://doi.org/10.1016/j.scitotenv.2022.155498

Marschner, P. and Baumann, K., 2003. Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize. Plant Soil, 251, 279–289. https://doi.org/10.1023/A:1023034825871

Phillips, J.M. and Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, pp.158-IN18. https://doi.org/10.1016/s0007-1536(70)80110-3

Rangel González, M.G., 2018. Capacidad de supervivencia y acumulación de metales pesados de algunas plantas nativas del municipio de Mexicali en residuos mineros. Tesis de maestría, Universidad Autónoma de Baja California. https://repositorioinstitucional.uabc.mx/entities/publication/8bbdb2c6-f780-4fed-9c1b-7da66998b83d

Rangel-González, M.G., Solís-Domínguez, F.A., Herrera-Martínez, A., Carrillo-González, R., López-Luna, J., González-Chávez, M.C.A. and Rodríguez, M.D., 2024. Cyanide biodegradation: a scoping review. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-024-05885-1

Solís-Domínguez, F.A., Valentín-Vargas, A., Chorover, J. and Maier, R.M. 2011. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community of mesquite grown in acidic lead/zinc mine tailings. Science of the Total Environment. 409, 1009-1016. http://www.ncbi.nlm.nih.gov/pubmed/21211826

Solís-Dominguez, F.A., White, S.A., Borrillo, H.T., Amistadi, M.K., Chorover, J. and Maier, R.M., 2012. Response of Key Soil Parameters During Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species. Environmental Science and Technology, 46: 1019-1027. https://doi.org/10.1021/es202846n

Tarkaman, P. and Veiga, M.M., 2023. Comparing cyanidation with amalgamation of a Colombian artisanal gold mining sample: Suggestion of a simplified zinc precipitation process. The Extractive Industries and Society, 13, 101208. https://doi.org/10.1016/j.exis.2022.101208

Téllez-Ramírez, I. and Sánchez-Salazar, M.T., 2024. Mining-metallurgical monopoly capital in Mexico, 1960–2023. The Extractive Industries and Society, 20, 101545. https://doi.org/10.1016/j.exis.2024.101545

Zhang, Y., Cui, M., Wang, J., Liu, X. and Lyu, X., A review of gold extraction using alternatives to cyanide: Focus on current status and future prospects of the novel eco-friendly synthetic gold lixiviants. Minerals Engineering, 176, 107336. https://doi.org/10.1016/j.mineng.2021.107336

Worlanyo, A.S. and Jiangfeng, L. 2021. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. Journal of Environmental Management. 279, 111622. https://doi.org/10.1016/j.jenvman.2020.111623




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.60510

DOI: http://dx.doi.org/10.56369/tsaes.6051



Copyright (c) 2025 Fernando Amilcar Solí-Domínguez, Aseneth Herrera-Martínez, Karyme Andrea Lepe Terrazas, María Guadalupe Rangel González, Rogelio Carrillo-González, Alicia Alcocer García

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.