A GLOBAL VISION OF AGROECOLOGICAL PRACTICES FOR RECYCLING AGRICULTURAL WASTE: LIMITATIONS AND POTENTIALS IN TERRITORIAL CONTEXTS

Laura Elena Morales-Mendoza, Felipe Gallardo López, Mario Alejandro Hernández-Chontal, Rosa Isela Castillo Zamudio

Abstract


Background. Agroecological practices (AP) for managing agricultural waste (AW) available in agroecosystems represent an opportunity to mitigate the negative effects caused by conventional agricultural practices. However, knowledge gaps persist regarding the options for their management and the territorial context of application. Objective.  To identify APs with potential for AW management. Methodology. The first phase, a bibliometric analysis was realized with a query in the Web of Science (WoS) search engine with the phrase "Agroecological practices for the management of agricultural waste". The search database was analyzed with the VOSviewer software to delimit thematic groups and identify AP for managing AW. The second phase involved a technological surveillance (TS), which consisted of the description, analysis, and selection of the territorial environment where its development is possible, with the aim of identifying the AP with the highest potential for recycling AW into agroecosystems. Results. It was found that 71% of the scientific publications are from the last four years. Six keyword clusters were identified, which based on node size and proximity to each other are located: 1) management, 2) nitrogen, 3) manure, 4) carbon, 5) compost and 6) soil. Implications. The analysis allowed to identify the techniques of anaerobic digestion (AD), composting and biochar with potential for the reintegration of AR. Conclusion. The reintegration of AW presents an opportunity to promote the sustainability of agroecosystems through agroecological principles such as nutrient recycling into the soil and energy recovery. This study highlights that the recycling of AW is essential for initiating an agroecological transition, with composting being a key technology for direct implementation and improving the sustainability of food systems.

Keywords


Agroecological practices; agricultural waste; recycling; territorial contexts.

Full Text:

PDF

References


Agapkin, A.M., Makhotina, I.A., Ibragimova, N.A., Goryunova, O.B., Izembayeva, A.K. and Kalachev, S.L., 2022. The problem of agricultural waste and ways to solve it. IOP Conference Series: Earth and Environmental Science, 981(2), pp. 022009. https://doi.org/10.1088/1755-1315/981/2/022009

Agrawal, A., Chaudhari, P.K. and Ghosh, P., 2023. Anaerobic digestion of fruit and vegetable waste: a critical review of associated challenges. Environmental Science and Pollution Research, 30(10), pp. 24987-25012. https://doi.org/10.1007/s11356-022-21643-7

Alzate, B.A., Giraldo, L.T. and Barbosa, A.F., 2012. Vigilancia tecnológica: metodologías y aplicaciones. Revista Electrónica Gestión de las Personas y Tecnología, 5(13), pp. 1-8. https://www.redalyc.org/articulo.oa?id=477847114019

Arias, C.M., da Silva, L.F.S., Soares, M.R. and Forti, V.A., 2023. A bibliometric analysis on the agricultural use of biochar in Brazil from 2003 to 2021: research status and promising raw materials. Renewable Agriculture and Food Systems, 38, pp. 1-11. https://doi.org/10.1017/S1742170522000412

Awasthi, S.K., Sarsaiya, S., Awasthi, M.K., Liu, T., Zhao, J., Kumar, S. and Zhang, Z., 2020. Changes in global trends in food waste composting: Research challenges and opportunities. Bioresource Technology, 299, pp. 122555. https://doi.org/10.1016/j.biortech.2019.122555

Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O. and Odeyemi, O., 2020. Waste management through composting: Challenges and potentials. Sustainability, 12(11), pp. 44-56. https://doi.org/10.3390/su12114456

Blasi, A., Verardi, A., Lopresto, C.G., Siciliano, S. and Sangiorgio, P., 2023. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling, 8(4), pp. 1-46. https://doi.org/10.3390/recycling8040061

Çakmakç?, R., Sal?k, M.A. and Çakmakç?, S., 2023. Assessment and principles of environmentally sustainable food and agriculture systems. Agriculture, 13(5), pp. 1073. https://doi.org/10.3390/agriculture13051073

Campion, L., Bekchanova, M., Malina, R. and Kuppens, T., 2023. The costs and benefits of biochar production and use: A systematic review. Journal of Cleaner Production, 408, pp. 1-15. https://doi.org/10.1016/j.jclepro.2023.137138

Chen, L., Chen, Y., Li, Y., Liu, Y., Jiang, H., Li, H., Yuan, Y., Chen, Y. and Zou, B., 2023. Improving the humification by additives during composting: A review. Waste Management, 158, pp. 93-106. https://doi.org/10.1016/j.wasman.2022.12.040

Chew, K.W., Chia, S.R., Yen, H.W., Nomanbhay, S., Ho, Y.C. and Show, P.L., 2019. Transformation of biomass waste into sustainable organic fertilizers. Sustainability, 11(8), pp. 1-19. https://doi.org/10.3390/su11082266

Chin-Pampillo, J.S., Alfaro-Vargas, A., Rojas, R., Giacomelli, C.E., Pérez-Villanueva, M., Chinchilla-Soto, C., Alcañiz, J.M. and Domene, X., 2021. Widespread tropical agrowastes as novel feedstocks for biochar production: characterization and priority environmental uses. Biomass Conversion and Biorefinery, 11, pp. 1775-1785. https://doi.org/10.1007/s13399-020-00714-0

Cunha Zied, D., Sánchez, J.E., Noble, R. and Pardo-Giménez, A., 2020. Use of spent mushroom substrate in new mushroom crops to promote the transition towards a circular economy. Agronomy, 10(9), pp. 1-20. https://doi.org/10.3390/agronomy10091239

Danesh, P., Niaparast, P., Ghorbannezhad, P. and Ali, I., 2023. Biochar production: Recent developments, applications, and challenges. Fuel, 337, pp. 1-8. https://doi.org/10.1016/j.fuel.2022.126889

De Corato, U., 2020. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Science of the Total Environment, 738, pp. 1-22. https://doi.org/10.1016/j.scitotenv.2020.139840

Dickinson, D., Balduccio, L., Buysse, J., Ronsse, F., Van Huylenbroeck, G. and Prins, W., 2015. Cost-benefit analysis of using biochar to improve cereals agricultura. Global Change Biology Bioenergy, 7(4), pp. 850-864. https://doi.org/10.1111/gcbb.12180

Duque-Acevedo, M., Belmonte-Ureña, L.J., Cortés-García, F.J. and Camacho-Ferre, F., 2020. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 2, pp. 1-23. https://doi.org/10.1016/j.gecco.2020.e00902

Fabi, C., Cachia, F., Conforti, P., English, A. and Moncayo, J.R., 2021. Improving data on food losses and waste: From theory to practice. Food Policy, 98, pp. 1-10. https://doi.org/10.1016/j.foodpol.2020.101934

FAO., 2018. The 10 elements of agroecology: guiding the transition to sustainable food and agricultural systems. http://www.fao.org/3/i9037en/i9037en.pdf

FAO., 2019. The state of food and agriculture 2019: Moving forward on food loss and waste reduction, Rome. http://www.fao.org/3/ca6030en/ca6030en.pdf

Fernandes, D.J., Ferreira, A.F. and Fernandes, E.C., 2023. Biogas and biomethane production potential via anaerobic digestion of manure: a case study of Portugal. Renewable and Sustainable Energy Reviews, 188, pp. 1-11. https://doi.org/10.1016/j.rser.2023.113846

Galindo-Segura, L.A., Pérez-Vázquez, A., Landeros-Sánchez, C. and Gómez-Merino, F.C., 2021. Bibliometric analysis of scientific research on biochar. AgroProductividad, 14(2), pp. 15-21. https://doi.org/10.32854/agrop.v14i2.1710

Hawes, C., Lannetta, P.P.M. and Squire, G. R., 2021. Agroecological practices for whole-system sustainability. CAB Reviews, 16(5), pp. 1-19. https://doi.org/10.1079/PAVSNNR202116005

Hossain, M.Z., Bahar, M.M., Sarkar, B., Donne, S.W., Ok, Y.S., Palansooriya, K.N., Kirkham, M.B., Chowdhury, S. and Bolan, N., 2020. Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, pp. 379-420. https://doi.org/10.1007/s42773-020-00065-z

Jeswani, H.K., Figueroa-Torres, G. and Azapagic, A., 2021. The extent of food waste generation in the UK and its environmental impacts. Sustainable Production and Consumption, 26, pp. 532-547. https://doi.org/10.1016/j.spc.2020.12.021

Jeyasubramanian, K., Thangagiri, B., Sakthivel, A., Raja, J. D., Seenivasan, S., Vallinayagam, P., Madhavan, D., Devi, S. M. and Rathika, B., 2021. A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel, 292, pp. 1-22. https://doi.org/10.1016/j.fuel.2021.120243

Jin, C., Sun, S., Yang, D., Sheng, W., Ma, Y., He, W. and Li, G., 2021. Anaerobic digestion: An alternative resource treatment option for food waste in China. Science of the Total Environment, 779, pp. 1-23. https://doi.org/10.1016/j.scitotenv.2021.146397

Karki, R., Chuenchart, W., Surendra, K.C., Shrestha, S., Raskin, L., Sung, S., Hashimoto, A. and Khanal, S.K., 2021. Anaerobic co-digestion: Current status and perspectives. Bioresource Technology, 330, pp. 1-22. https://doi.org/10.1016/j.biortech.2021.125001

Kavitha, B., Reddy, P.V.L., Kim, B., Lee, S.S., Pandey, S. K. and Kim, K.H., 2018. Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227, pp. 146-154. https://doi.org/10.1016/j.jenvman.2018.08.082

Khoshnevisan, B., Duan, N., Tsapekos, P., Awasthi, M.K., Liu, Z., Mohammadi, A., Angelidaki, I., Tsang, D.C.W., Zhang, Z., Pan, J., Ma, L., Aghbashlo, M., Tabatabaei, M. and Liu, H., 2021. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 135, pp. 1-24. https://doi.org/10.1016/j.rser.2020.110033

Kumar, M., Dutta, S., You, S., Luo, G., Zhang, S., Show, P.L., Sawarkar, A.D., Singh, L. and Tsang, D.C., 2021. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. Journal of Cleaner Production, 305, pp. 1-23. https://doi.org/10.1016/j.jclepro.2021.127143

Kumar, P., Raj, A. and Kumar, V.A., 2024. Approach to Reduce Agricultural Waste via Sustainable Practices. In: Srivastav, A.L., Bhardwaj, A.K. and Kumar, M., eds. Valorization of Biomass Wastes for Environmental Sustainability. Switzerland: Springer, Cham. págs. 21-50. https://doi.org/10.1007/978-3-031-52485-1_2

Kunatsa, T. and Xia, X., 2022. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresource technology, 344, pp. 1-20. https://doi.org/10.1016/j.biortech.2021.126311

Lee, M.E., Steiman, M.W. and Angelo, S.K.S., 2021. Biogas digestate as a renewable fertilizer: Effects of digestate application on crop growth and nutrient composition. Renewable Agriculture and Food Systems, 36(2), pp. 173-181. https://doi.org/10.1017/S1742170520000186

Lemes, Y.M., Nyord, T., Feilberg, A., Hafner, S.D. and Pedersen, J., 2023. Effect of anaerobic digestion on odor and ammonia emission from land-applied cattle manure. Journal of Environmental Management, 338, pp. 1-22. https://doi.org/10.1016/j.jenvman.2023.117815

Liu, H., Long, J., Zhang, K., Li, M., Zhao, D., Song, D. and Zhang, W., 2024. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. Science of the Total Environment, 946, pp. 1-30. https://doi.org/10.1016/j.scitotenv.2024.174180

Locoli, G.A., Zabaloy, M.C., Pasdevicelli, G. and Gómez, M.A., 2019. Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Science of the Total Environment, 647, pp. 11-19. https://doi.org/10.1016/j.scitotenv.2018.07.444

Madsen, M., Holm-Nielsen, J.B. and Esbensen, K.H., 2011. Monitoring of anaerobic digestion processes: A review perspective. Renewable and Sustainable Energy Reviews, 15(6), pp. 3141-3155. https://doi.org/10.1016/j.rser.2011.04.026

Madsen, S., Bezner Kerr, R., Shumba, L. and Dakishoni, L., 2021. Agroecological practices of legume residue management and crop diversification for improved smallholder food security, dietary diversity and sustainable land use in Malawi. Agroecology and Sustainable Food Systems, 45(2), pp. 197-224. https://doi.org/10.1080/21683565.2020.1811828

Maharjan, K.K., Noppradit, P. and Techato, K., 2022. Suitability of vermicomposting for different varieties of organic waste: a systematic literature review (2012-2021). Organic Agriculture, 12(4), pp. 581-602. https://doi.org/10.1007/s13165-022-00413-2

Maturi, K.C. and Kalamdhad, A.S., 2023. Comprehensive assessment of composting process of organic substrates using science mapping techniques. Bioresource Technology Reports, 25, pp. 101718. https://doi.org/10.1016/j.biteb.2023.101718

Mazumder, P., Khwairakpam, M. and Kalamdhad, A.S., 2023. Assessment of multi-metal contaminant in agricultural soil amended with organic wastes, speciation and translocation–an approach towards sustainable crop production. Total Environment Research Themes, 5, pp. 1-25. https://doi.org/10.1016/j.totert.2023.100025

Nanda, S. and Berruti, F., 2021. A technical review of bioenergy and resource recovery from municipal solid waste. Journal of Hazardous Materials, 403, pp. 1-16. https://doi.org/10.1016/j.jhazmat.2020.123970

Nikiema, T., Ezin, E.C. and Kpenavoun Chogou, S., 2023. Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment. Sustainability, 15(21), pp. 1-18. https://doi.org/10.3390/su152115616

Niles, M.T., 2020. Majority of rural residents compost food waste: policy and waste management implications for rural regions. Frontiers in Sustainable Food Systems, 3, pp. 1-9. https://doi.org/10.3389/fsufs.2019.00123

Nkoa, R., 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34, pp. 473-492. https://doi.org/10.1007/s13593-013-0196-z

O'Connor, T., Kleemann, R. and Attard, J., 2022. Vulnerable vegetables and efficient fishers: A study of primary production food losses and waste in Ireland. Journal of Environmental Management, 307, pp. 1-16. https://doi.org/10.1016/j.jenvman.2022.114498

Ozcariz-Fermoselle, M.V., de Vega-Luttmann, G., Lugo-Monter, F.D.J., Galhano, C. and Arce-Cervantes, O., 2019. Promoting circular economy through sustainable agriculture in Hidalgo: Recycling of agro-industrial waste for production of high nutritional native mushrooms. In: Castro, P., Azul, A., Leal Filho, W. and Azeiteiro, U., eds. Climate Change-Resilient Agriculture and Agroforestry. Switzerland: Springer, Cham. pp. 455-469. https://doi.org/10.1007/978-3-319-75004-0_26

Palaniveloo, K., Amran, M.A., Norhashim, N.A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Kai-Lin, Y., Jiale, L., Chian-Yee, M. G., Jing-Yi, L., Gunasekaran, B. and Razak, S.A., 2020. Food waste composting and microbial community structure profiling. Processes, 8(6), pp. 1-30. https://doi.org/10.3390/pr8060723

Palomo-Campesino, S., García-Llorente, M., Hevia, V., Boeraeve, F., Dendoncker, N. and González, J.A., 2022. Do agroecological practices enhance the supply of ecosystem services? A comparison between agroecological and conventional horticultural farms. Ecosystem Services, 57, pp. 1-22. https://doi.org/10.1016/j.ecoser.2022.101474

Panda, A.K., Mishra, R., Dutta, J., Wani, Z.A., Pant, S., Siddiqui, S., Alamri, S.A., Alrunmman, S.A., Alkahtani, M.A. and Bisht, S.S., 2022. Impact of Vermicomposting on greenhouse gas emission: a short review. Sustainability, 14(18), pp. 1-11. https://doi.org/10.3390/su141811306

Panettieri, M., Moreno, B., de Sosa, L.L., Benítez, E. and Madejón, E., 2022. Soil management and compost amendment are the main drivers of carbon sequestration in rainfed olive trees agroecosystems: An evaluation of chemical and biological markers. Catena, 214, pp. 1-22. https://doi.org/10.1016/j.catena.2022.106258

Pergola, M., Persiani, A., Palese, A.M., Di Meo, V., Pastore, V., D’Adamo, C. and Celano, G., 2018. Composting: The way for a sustainable agriculture. Applied Soil Ecology, 123, pp. 744-750. https://doi.org/10.1016/j.apsoil.2017.10.016

Pottipati, S., Haq, I. and Kalamdhad, A. S., 2023. Large-scale production of a nutrient-rich soil conditioner by optimized biodegradation of vegetable waste: biodiversity and toxicity assessments. Biomass Conversion and Biorefinery, 14, pp. 19581-19595. https://doi.org/10.1007/s13399-023-04050-x

Qin, Y., Huang, L., Jiang, Q., Lu, T., Xin, Y., Zhen, Y., Liu, J. and Shen, P., 2022. Anaerobic co-digestion of molasses vinasse and three kinds of manure: A comparative study of performance at different mixture ratio and organic loading rate. Journal of Cleaner Production, 371, pp. 1-11. https://doi.org/10.1016/j.jclepro.2022.133631

Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q. and Baroutian, S., 2020. Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel, 261, pp. 1-12. https://doi.org/10.1016/j.fuel.2019.116497

Robles, Á., Aguado, D., Barat, R., Borrás, L., Bouzas, A., Giménez, J.B., Martí, N., Ribes, J., Ruano, M.V., Serralta, J., Ferrer, J. and Seco, A., 2020. New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 300, pp. 1-16. https://doi.org/10.1016/j.biortech.2019.122673

Sayara, T., Basheer-Salimia, R., Hawamde, F. and Sánchez, A., 2020. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy, 10(11), pp. 1-23. https://doi.org/10.3390/agronomy10111838

Senadheera, S.S., Gupta, S., Kua, H.W., Hou, D., Kim, S., Tsang, D. C. and Ok, Y.S., 2023. Application of biochar in concrete: A review. Cement and Concrete Composites, 143, pp. 1-22. https://doi.org/10.1016/j.cemconcomp.2023.105204

Seow, Y.X., Tan, Y.H., Mubarak, N.M., Kansedo, J., Khalid, M., Ibrahim, M.L. and Ghasemi, M., 2022. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering, 10(1), pp. 1-30. https://doi.org/10.1016/j.jece.2021.107017

Sharma, B., Vaish, B., Monika, Singh, U.K., Singh, P. and Singh, R.P., 2019. Recycling of organic wastes in agriculture: an environmental perspective. International Journal of Environmental Research, 13, pp. 409-429. https://doi.org/10.1007/s41742-019-00175-y

Shinde, R., Shahi, D.K., Mahapatra, P., Singh, C.S., Naik, S.K., Thombare, N. and Singh, A.K., 2022. Management of crop residues with special reference to the on-farm utilization methods: A review. Industrial Crops and Products, 181, pp. 1-16. https://doi.org/10.1016/j.indcrop.2022.114772

Siddiqui, Y., Islam, T.M., Naidu, Y. and Meon, S., 2011. The conjunctive use of compost tea and inorganic fertilizer on the growth, yield and terpenoid content of Centella asiatica (L.) urban. Scientia Horticulturae, 130, pp. 289–295. https://doi.org/10.1016/j.scienta.2011.05.043

Silwadi, M., Mousa, H., Al-Hajji, B. Y., Al-Wahaibi, S. S. and Al-Harrasi, Z.Z., 2023. Enhancing biogas production by anaerobic digestion of animal manure. International Journal of Green Energy, 20(3), pp. 257-264. https://doi.org/10.1080/15435075.2022.2038608

Song, X., Pan, G., Zhang, C., Zhang, L. and Wang, H., 2016. Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta?analysis. Ecosystem Health and Sustainability, 2(2), 1-13. https://doi.org/10.1002/ehs2.1202

Sonu, Rani, G.M., Pathania, D., Umapathi, R., Rustagi, S., Huh, Y.S., Gupta, V.K., Kaushik, A. and Chaudhary, V., 2023. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Science of The Total Environment, 875, pp. 1-18. https://doi.org/10.1016/j.scitotenv.2023.162667

Suleiman, A.K.A., Lourenço, K.S., Pitombo, L.M., Mendes, L.W., Roesch, L.F.W., Pijl, A., Carmo, J.B., Cantarella, H. and Kuramae, E.E., 2018. Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N2O emissions. Science of the Total Environment, 631, pp. 1089-1099. https://doi.org/10.1016/j.scitotenv.2018.03.116

Van Eck, N.J. and Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, pp. 523–538. https://doi.org/10.1007/s11192-009-0146-3

Wainaina, S., Awasthi, M.K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A., Ravidran, B., Awasthi, S.K., Liu, T., Duan, Y., Kumar, S., Zhang, Z. and Taherzadeh, M.J., 2020. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresource Technology, 301, pp. 1-14. https://doi.org/10.1016/j.biortech.2020.122778

Walling, E. and Vaneeckhaute, C., 2020. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, 276, pp. 111211. https://doi.org/10.1016/j.jenvman.2020.111211

Wang, Q. Awasthi, M.K., Zhang, Z. and Wong, J.W.C., 2019. Sustainable composting and its environmental implications. In: Taherzadeh, M. J., Boltonm K., Wong, J. and Pandey, A., eds. Sustainable resource recovery and zero waste approaches. Netherlands: Elsevier. pp. 115-132. https://doi.org/10.1016/B978-0-444-64200-4.00009-8

Waqas, M., Hashim, S., Humphries, U.W., Ahmad, S., Noor, R., Shoaib, M., Naseem, A., Hlaing, P.T. and Lin, H.A., 2023. Composting processes for agricultural waste management: a comprehensive review. Processes, 11(3), pp. 1-23. https://doi.org/10.3390/pr11030731

Wezel, A., Casagrande, M., Celette, F., Vian, J.F., Ferrer, A. and Peigné, J., 2014. Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34(1), pp. 1-20. https://doi.org/10.1007/s13593-013-0180-7

Wezel, A., Herren, B.G., Kerr, R.B., Barrios, E., Gonçalves, A.L.R. and Sinclair, F., 2020. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agronomy for Sustainable Development, 40, pp. 1-13. https://doi.org/10.1007/s13593-020-00646-z

Yenigün, O. and Demirel, B., 2013. Ammonia inhibition in anaerobic digestion: a review. In Process biochemistry, 48(5), pp. 901-911. https://doi.org/10.1016/j.procbio.2013.04.012

Zamri, M.F.M.A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Fattah, I.M.R. and Mahlia, T.M.I., 2021. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, pp.1-17. https://doi.org/10.1016/j.rser.2020.110637

Zheng, Y., Zhao, J., Xu, F. and Li, Y., 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, pp. 35-53. https://doi.org/10.1016/j.pecs.2014.01.001




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.60203

DOI: http://dx.doi.org/10.56369/tsaes.6020



Copyright (c) 2025 Felipe Gallardo López, Laura Elena Morales-Mendoza, Mario Alejandro Hernández-Chontal, Rosa Isela Castillo Zamudio

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.