Aqueous botanical extracts for the control of Spodoptera frugiperda (JE Smith) in corn, its chromatographic profile and compatibility with the bee Melipona beecheii (Bennett)

Esaú Ruiz Sánchez, Arnoldo Enrique Alfaro Corres, Daniel González Mendoza, Federico Antonio Gutiérrez Miceli, Arturo Reyes Ramírez, René Garruña Hernández, Emanuel Hernández Núñez

Abstract


Background. One of the promising alternatives in the control of Spodoptera frugiperda is the use of botanical extracts due to their effectiveness and safety to the environment. Objective. To evaluate aqueous botanical extracts (ABE) in reducing damage by S. frugiperda in corn and their compatibility with the bee Melipona beecheii. Methodology. Aqueous foliar extracts of Azadirachta indica, Capsicum chinense, Chenopodium ambrosioides and Pluchea sericea at 2% (m/v) were applied to maize plants of the Sorento hybrid and their activity against S. frugiperda was determined under a completely randomized block design in two experiments. The toxicity of ABE ingestion was also evaluated in the laboratory in M. beecheii and the chromatographic profile of the extracts was carried out using gas chromatography coupled to mass spectrometry. Results. The application of ABE in corn had no effect on the percentage of damaged plants, but did reduce the severity of damage (degree of damage) in Experiment 1. The ABE had no effects on the mortality or walking activity of M. beecheii. The major compounds of ABEs include terpenoids, phenols and fatty acids. Implications. The use of ABE can be an alternative for the control of S. frugiperda, but it is necessary to continue with evaluations of different concentrations and application frequencies. Conclusions. ABEs had no effects on the incidence of damage by S. frugiperda. Its effects on damage severity were inconsistent. ABEs could be compatible with pollinators, such as M. beecheii.

Keywords


Botanical insecticides; plant extracts; maize pests.

Full Text:

PDF

References


Ahmed, W.H., Atwa, W.A., Elshaier, M.E. and Abdullah, G.E., 2021. Toward efficient and safe control strategy against cotton leaf worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) applying onion and pepper extracts and their oils. Al–Azhar Bulletin of Science: Section C, 32(2), pp. 9–15. https://doi.org/10.21608/absb.2021.89834.1129

Ail-Catzim, C.E., García-López, A.M., Troncoso-Rojas, R., González-Rodríguez, R.E. and Sánchez-Segura, Y., 2015. Insecticidal and repellent effect of extract of Pluchea sericea (Nutt.) on adults Bemisia tabaci (Genn.). Revista Chapingo, Serie Horticultura, 21(1), pp. 33–41. https://doi.org/10.5154/r.rchsh.2014.09.038

Alfaro-Corres, A.E., González-Mendoza, D., Ruiz-Sánchez, E., Ail-Catzim, C., Valdez-Salas, B., Gutiérrez-Miceli, F., Reyes-Ramírez, A. and Pierre, J.F., 2023. Insecticidal activity and physicochemical characterization of nanoparticle from foliar extract of Capsicum chinense. Journal of Renewable Materials, 11(11), pp. 3933-43. https://doi.org/10.32604/jrm.2023.031129

Aly, H.M., Wahba, T.F. and Hassan, N.A., 2022. Pyroligneous acid derived from Ficus benjamina wastes synergize deltamethrin against Sitophilus oryzae. Egyptian Academic Journal of Biological Science, 14(1), pp. 47-54.

Arena, J.S., Omarini, A.B., Zunino, M.P., Peschiutta, M.L., Defagó, M.T. and Zygadlo, J.A., 2018. Essential oils from Dysphania ambrosioides and Tagetes minuta enhance the toxicity of a conventional insecticide against Alphitobius diaperinus. Industrial Crops and Products, 122, pp. 190–194. https://doi.org/10.1016/j.indcrop.2018.05.077

Ayinde, A.A., Morakinyo, O.M. and Sridhar, M.K.C., 2020. Repellency and larvicidal activities of Azadirachta indica seed oil on Anopheles gambiae in Nigeria. Heliyon, 6(5), p. e03920. https://doi.org/10.1016/j.heliyon.2020.e03920

Bharathithasan, M., Ravindran, D.R., Rajendran, D., Chun, S.K., Abbas, S.A., Sugathan, S., Yahaya, Z.S., Said, A.R., Oh, W.D., Kotra, V., Mathews, A., Amin, M.F.M., Ishak, I.H. and Ravi, R., 2021. Analysis of chemical compositions and larvicidal activity of nut extracts from Areca catechu Linn against Aedes (Diptera: Culicidae). PloS One, 16(11), p. e0260281. https://doi.org/10.1371/journal.pone.0260281

Botina, L.L., Bernardes, R.C., Barbosa, W.F., Lima, M.A.P., Guedes, R.N.C. and Martins, G.F., 2020. Toxicological assessments of agrochemical effects on stingless bees (Apidae, Meliponini). MethodsX, 7, p. 100906. https://doi.org/10.1016/j.mex.2020.100906

Catania, R., Lima, M.A.P., Potrich, M., Sgolastra, F., Zappalà, L. and Mazzeo, G., 2023. Are botanical biopesticides safe for bees (Hymenoptera, Apoidea)? Insects, 14(3), p. 247. https://doi.org/10.3390/insects14030247

Che, Z., Guo, X., Li, Y., Zhang, S., Zhu, L., He, J., Sun, D., Guo, Y., Liu, Y., Wei, R., Huang, X., Liu, S., Chen, G. and Tian, Y., 2022. Synthesis of paeonol ester derivatives and their insecticidal, nematicidal, and anti-oomycete activities. Pest Management Science. 78(8), pp. 3442-3455. https://doi.org/10.1002/ps.6985

Chen, H.L., Hasnain, A., Cheng, Q.H., Xia, L.J., Cai, Y.H., Hu, R., Gong, C.W., Liu, X.M., Pu, J., Zhang, L. and Wang, X.G., 2023. Resistance monitoring and mechanism in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) for chlorantraniliprole from Sichuan Province, China. Frontiers in Physiology, 14, p. 1180655. https://doi.org/10.3389/fphys.2023.1180655

Cunha-Pereira, R., Faria-Barbosa, W., Pereira-Lima, M.A., Vieira, J.O.L., Carvalho-Guedes, R.N., Rodrigues da Silva, B.K., Dias-Barbosa, G.M. and Fernandes, F.L., 2020. Toxicity of botanical extracts and their main constituents on the bees Partamona helleri and Apis mellifera. Ecotoxicology, 29(3), pp. 246–257. https://doi.org/10.1007/s10646-020-02167-7

Davis, F. and Williams, W., 1992. Visual rating scales for screening whorl-stage for resistance to fall armyworm. Technical Bulletin 186. Mississippi State University, MS, USA: Mississippi Agricultural and Forestry Research Experiment Station.

Da Silva, I.M., Zanuncio, J.C., Brügger, B.P., Soares, M.A., Zanuncio, A.J.V., Wilcken, C.F., Tavares, W.S., Serrao, J.E. and Sediyama, C.S., 2020. Selectivity of the botanical compounds to the pollinators Apis mellifera and Trigona hyalinata (Hymenoptera: Apidae). Scientific Reports, 10(1), p. 4820. https://doi.org/10.1038/s41598-020-61469-2

DeGroote, H., Kimenju, S.C., Munyua, B., Palmas, S., Kassie, M. and Bruce, A., 2020. Spread and impact of fall armyworm (Spodoptera frugiperda JE Smith) in maize production areas of Kenya. Agriculture, Ecosystems and Environment, 292, p. 106804. https://doi.org/10.1016/j.agee.2019.106804

Eroglu, O., Kurum, M. and Ball, J., 2019. Response of GNSS-R on dynamic vegetated terrain conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(5), pp. 1599–1611. https://doi.org/10.1109/JSTARS.2019.2910565

Farooq, M.A., Atta, B., Gogi, M.D., Arif, M.J. and Arain, Q.A., 2020. Compatibility of entomopathogenic fungi and Azadirachta indica extrac against the cotton pink bollworn, Pectiophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) under controlled conditions. Egyptian Journal of Biological Pest Control, 30(63). https://doi.org/10.1186/s41938-020-00260-x

Fiaboe, K.R., Fening, K.O., Gbewonyo, W.S.K. and Deshmukh, S., 2023. Bionomic responses of Spodoptera frugiperda (J.E. Smith) to lethal and sublethal concentrations of selected insecticides. PloS one, 18(11), p. e0290390. https://doi.org/10.1371/journal.pone.0290390

Góngora-Gamboa, C., Ruiz-Sánchez, E., Ballina-Gómez, H.S., González-Moreno, A. and Zamora-Bustillos, R., 2022. Survival rate of the neotropical stingless bees Nannotrigona perilampoides and Frieseomelitta nigra after exposure to five selected insecticides, under controlled conditiones. Insects, 13(10), p. 191. https://doi.org/10.3390/insects13100961

Gutiérrez-Moreno, R., Mota-Sánchez, D., Blanco, C.A., Whalon, M.E., Terán-Santofimio, H., Rodriguez-Maciel, J.C. and DiFonzo, C., 2019. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. Journal of Economic Entomology, 112(2), pp. 792–802. https://doi.org/10.1093/jee/toy372

Harrison, R., Banda, J., Chipabika, G., Chisonga, C., Katema, C., Ndalamei, D.M., Nyirenda, S. and Tembo, H., 2022. Low impact of fall armyworm (Spodoptera frugiperda) (Lepidoptera: Noctuidae) across smallholder fields in Malawi and Zambia. Journal of Economic Entomology, 116(6), pp. 1783-89. https://doi.org/10.1093/jee/toac113

Hernández-Carlos, B. and Gamboa-Angulo, M., 2019. Insecticidal and nematicidal contributions of mexican flora in the search for safer biopesticides. Molecules, 24(5), p. 897. https://doi.org/10.3390/molecules24050897

Hoesain, M., Suharto., Prastowo, S., Pradana, A.P., Alfarisy, F.K. and Adiwena, M., 2023. Investigating the plant metabolite potential as botanical insecticides against Spodoptera litura with different application methods. Cogent Food & Agriculture, 9(1). https://doi.org/10.1080/23311932.2023.2229580

Kardinan, A. and Maris, P., 2021. Effect of botanical insecticides against fall armyworm Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae). IOP Conference Series: Earth and Environmental Science, 653(1), p. 012060. https://doi.org/10.1088/1755-1315/653/1/012060

Karkanis, A.C. and Athanassiou, C.G., 2021. Natural insecticides from native plants of the Mediterranean basin and their activity for the control of major insect pests in vegetable crops: shifting from the past to the future. Journal of Pest Science, 94, pp. 187–202. https://doi.org/10.1007/s10340-020-01275-x

Kammo, E.Q., Suh, C., Mbong, G.A., Djomo, S.H., Chimi, N.L.L., Mbeungang, D.L., Mafousson, H., Meseka, S. and Menkir, A., 2019. Biological versus chemical control of fall armyworm and Lepidoptera stem borers of maize (Zea mays). Agronomie Africaine, 31(2), pp.187–198.

Kenis, M., Benelli, G., Biondi, A., Calatayud, P.A., Day, R., Desneux, N., Harrison, R.D., Kriticos, D., Rwomushana, I, van der Berg, J., et al., 2023. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomologia Generalis, 43(2), pp. 187-241. https://doi.org/10.1127/entomologia/2022/1659

Khamis, W.M., Behiry, S.I., Marey, S.A., Al-Askar, A.A., Amer, G., Heflish, A.A., Su, Y., Abdelkhalek, A. and Gaber, M.K., 2023. Phytochemical analysis and insight into insecticidal and antifungal activities of Indian hawthorn leaf extract. Scientific reports, 13(1), p. 17194. https://doi.org/10.1038/s41598-023-43749-9

Lim, H., Lee, S.Y., Ho, L.Y. and Sit, N.W., 2023. Mosquito larvicidal activity and cytotoxicity of the extracts of aromatic plants from Malaysia. Insects, 14(6), p. 512. https://doi.org/10.3390/insects14060512

Liu, J.F., Lin, Y.Z., Huang, Y.T., Liu, L.Y., Cai, X.M., Lin, J.T. and Shu, B., 2023. The effects of carvacrol on development and gene expression profiles in Spodoptera frugiperda. Pesticide Biochemistry and Physiology, 195, p. 105539. https://doi.org/10.1016/j.pestbp.2023.105539

Mboussi, S.B., Ambang, Z., Kakam, S. and Bagny-Beilhe, L., 2018. Control of cocoa mirids using aqueous extracts of Thevetia peruviana and Azadirachta indica. Cogent Food & Agriculture, 4(1), p. 1430470. https://doi.org/10.1080/23311932.2018.143047

Murcia-Meseguer, A., Alves, T.J.S., Budia, F., Ortiz, A. and Median Pilar., 2018. Insecticidal toxicity of thirteen commercial plant essential oils against Spodoptera exigua (Lepidoptera: Noctuidae). Phytoparasitica, 46, pp. 233–245. https://doi.org/10.1007/s12600-018-0655-9

Neggaz, S., Chenni, M., Zitouni-Haouar, F.E. and Fernandez, X., 2020. Mycochemical composition and insecticidal bioactivity of Algerian desert truffles extract against two stored-product insects: Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). 3 Biotech, 10(11), p. 481. https://doi.org/10.1007/s13205-020-02472-2

Paris, E.H., Castrejon, V.B., Walker, D.S. and Lope, C.P., 2020. The origins of maya stingless beekeeping. Journal of Ethnobiology, 40(3), pp. 386-405. https://doi.org/10.2993/0278-0771-40.3.386

Phambala, K., Tembo, Y., Kasambala, T., Kabambe, V.H., Steverson, P.C. and Belmain, S.R. 2020. Bioactivity of common pesticidal plants on fall armyworm larvae (Spodoptera frugiperda). Plants, 9(1), pp.112. https://doi.org/10.3390/plants9010112

Pierre, J.F., Latournerie-Moreno, L., Garruña, R., Jacobsen, K.L., Laboski, C.A.M., Us-Santamaría, R. and Ruiz-Sánchez, E., 2022. Effect of Maize–Legume Intercropping on Maize Physio-Agronomic Parameters and Beneficial Insect Abundance. Sustainability, 14(19):12385. https://doi.org/10.3390/su141912385

Piovesan, B., Padilha, A.C., Morais, M.C., Botton, M., Grützmacher, A.D. and Zotti, M.J., 2020. Effects of insecticides used in strawberries on stingless bees Melipona quadrifasciata and Tetragonisca fiebrigi (Hymenoptera: Apidae). Environmental Science and Pollution Research, 27(34), pp. 42472-80. https://doi.org/10.1007/s11356-020-10191-7

Prakash, P., Gayathiri, E., Manivasagaperumal, R. and Krutmuang, P., 2021. Biological activity of root extract Decalepis hamiltonii (Wight & Arn) against three mosquito vectors and their non-toxicity against the mosquito predators. Agronomy, 11(7), p. 1267. https://doi.org/10.3390/agronomy11071267

Reuben, Y., Mayengo, M. and Daudi, S., 2023. Predatory effects on the dynamics of Spodoptera frugiperda infestationes in maize. Informatics in Medicine Unlocked, 42, p. 101365. https://doi.org/10.1016/j.imu.2023.101365

Roy, M. and Dutta, T.K., 2021. Evaluation of phytochemicals and bioactive properties in mangrove associate Suaeda monoica Forssk. ex J.F.Gmel. of Indian Sundarbans. Frontiers in Pharmacology, 12, p. 584019. https://doi.org/10.3389/fphar.2021.584019

Rukundo, P., Karangwa, P., Uzayisenga, B., Ingabire, J.P., Waweru, B.W. and Kajuga, J., 2020. Outbreak of fall armyworm (Spodoptera frugiperda) and its impact in Rwanda agriculture production. In: Niassy, S., Ekesi, S., Migiro, L., Otieno, W. (Eds) Sustainable Management of Invasive Pests in Africa. Sustainability in Plant and Crop Protection. Springer, Cham. pp. 139-157. https://doi.org/10.1007/978-3-030-41083-4_12

Sâmia, R.R., de Oliveira, R.L., Moscardini, V.F. and Carvalho, G.A., 2016. Effects of aqueous extracts of Copaifera langsdorffii (Fabaceae) on the growth and reproduction of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology, 45(5), pp. 580-587. https://doi.org/10.1007/s13744-016-0398-6

Shaiba, Z., Amoore, B., Amoore, I. and Renne, E., 2019. Assessing the impact of neem on fall armyworn damage to maize crops: A field-based study in Nabdam District, UER, Ghana. Journal of Agriculture and Sustainability, 12(2), pp. 185-201.

Sharma, A., Shukla, A., Attri, K., Kumar, M., Kumar P., Suttee, A., Singh, G., Barnwal, R.P. and Singla, N., 2020. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety, 201, p. 110812. https://doi.org/10.1016/j.ecoenv.2020.110812

Shilaluke, K.C. and Moteetee, A.N., 2022. Insecticidal activity and GC-MS analysis of the selected family members of Meliaceae used traditionally as insecticides. Plants, 11(22), p. 3046. https://doi.org/10.3390/plants11223046

Singh, K.D., Koijam, A.S., Bharali, R. and Rajashekar, Y., 2023. Insecticidal and biochemical effects of Dillenia indica L. leaves against three major stored grain insect pests. Frontiers in Plant Science, 14, p. 1135946. https://doi.org/10.3389/fpls.2023.1135946

Sisay, B., Simiyu, J., Mendesil, E., Likhayo, P., Ayalew, G., Mohamed, S., Subramanian, S. and Tefera, T., 2019a. Fall armyworm, Spodoptera frugiperda infestations in East Africa: Assessment of damage and parasitism. Insects, 10(7), p. 195. https://doi.org/10.3390/insects10070195

Sisay, B., Tefera, T., Wakgari, M., Ayalew, G. and Mendesil, E., 2019b. The Efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in Maize. Insects, 10(2), p. 45. https://doi.org/10.3390/insects10020045

Sogra, J., Jimmy, L., Kamik, K. and Galus, A., 2023. Bio-efficacy of plant-derivated pesticide against fall armyworm (Spodoptera frugiperda) and their interactive effects on maize agronomic performance under field conditions. Agricultural Sciences, 14, pp. 1535-46. https://doi.org/10.4236/as.2023.1411099

Souza, M.dD.dC., Giustolin, T.A., Alvarenga, C.D., Costa, J.N.dJ. and Aspiazú, I., 2018. Aqueous extract of pequi fruit to control Spodoptera frugiperda in corn. Arquivos Do Instituto Biológico, 85, p. e0072017. https://doi.org/10.1590/1808-1657000072017

Tanyi, C.B., Nkongho, R.N., Okolle, J.N., Tening, A.S. and Ngosong, C., 2020. Effect of intercropping beans with maize and botanical extract on fall armyworm (Spodoptera frugiperda) infestation. International Journal of Agronomy, 2020, pp. 1–7. https://doi.org/10.1155/2020/4618190

Tembo, Y., Mkindi, A.G., Mkenda, P.A., Mpumi, N., Mwanauta, R., Stevenson, P.C., Ndakidemi, P.A. and Belmain, SR., 2018. Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods. Frontiers in Plant Science, 9, p. 1425. https://doi.org/10.3389/fpls.2018.01425

Vite-Vallejo, O., Barajas-Fernández, M.G., Saavedra-Aguilar, M. and Cardoso-Taketa, A., 2018. Insecticidal effects of ethanolic extracts of Chenopodium ambrosioides, Piper nigrum, Thymus vulgaris, and Origanum vulgare against Bemisia tabaci. Southwestern Entomologist, 43(2), pp. 383-393. https://doi.org/10.3958/059.043.0209

Youssefi, M.R., Tabari, M.A., Esfandiari, A., Kazemi, S., Moghadamnia, A.A., Sut, S., Dall'Acqua, S., Benelli, G. and Maggi, F., 2019. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the west nile vector Culex pipiens. Molecules (Basel, Switzerland), 24(10), p. 1867. https://doi.org/10.3390/molecules24101867

Zhang, B., Su, X., Lu, L., Zhen, C., Zhu, B., Li, Y.S, Dong, W.Y., Wang, G., Xu, YB., Liu, R.Q., et a., 2020. Effects of three insecticides at the sublethal dose on the expression of cytochrome P450 genes in Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Entomologica Sinica, 63(5), pp. 565–573. https://doi.org/10.16380/j.kcxb.2020.05.005

Zou, M., Xue, Q., Teng, Q., Zhang, Q., Liu, T., Li, Y. and Zhao, J., 2023. Acaricidal activities of paeonol from Moutan Cortex, dried bark of Paeonia × suffruticosa, against the grain pest mite Aleuroglyphus ovatus (Acari: Acaridae). Experimental and Applied Acarology, 91, pp. 615–628. https://doi.org/10.1007/s10493-023-00861-9




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.59246

DOI: http://dx.doi.org/10.56369/tsaes.5924



Copyright (c) 2025 Esaú Ruiz Sánchez, Arnoldo Enrique Alfaro Corres, Daniel González Mendoza, Federico Antonio Gutiérrez Miceli, Arturo Reyes Ramírez, René Garruña Hernández, Emanuel Hernández Núñez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.