IDENTIFICATION OF ENTOMOPATHOGENIC FUNGI FOR THE BIOLOGICAL CONTROL OF Diaphorina citri IN CITRUS TREES

M. G. Landa-Cadena, A. Trigos, F. Hernández-Rosas, A. Salinas-Castro

Abstract


Background. Entomopathogenic fungi represent a sustainable alternative to reduce populations of the asian citrus psyllid Diaphorina citri, which acts as the vector of the pathogen Candidatus Liberibacter asiaticus, responsible for Huanglongbing (HLB) in citrus fruits. Objective. To identify morpho-taxonomic and molecular endophytic entomopathogenic fungi in persian lime, for use in the biological control of D. citri Veracruz. Methodology. The study was carried out in a persian lime Citrus latifolia crop in the Martínez de la Torre district, Veracruz, sampling was directed at trees that had myconized D. citri adults, on branches with tender shoots and mature leaflets. The fungi were isolated, purified and identified morphologically and morphometrically, and corroborated by molecular biology, through DNA amplification and sequencing of the ITS intergenic region. Under greenhouse conditions, the strains were inoculated by the method of flooding conidia in the basal part of stems and root system of Persian lime plants. In each treatment, 100 nymphs of the second stage of D. citri were released to evaluate the percentage of myconization and its endophytic establishment of fungal strains.  Results. The taxonomic morphology of the reproductive structures of the identified fungal species and compared with the sequences reported in the Gen Bank, gave high identity with the endophytic entomopathogenic fungi Acrodontium crateriforme, Hirsutella citriformis, Isaria fumosorosea, Metharizium anisopliae, Trichoderma harzanium, for the strain A. crateriforme is first time that it was found miconizing D.citri naturally. Implications. These findings indicate new areas of study related to endophytic entomopathogenic fungi as biological control agents, which can influence the regulation of asian psyllid populations, to reduce the incidence of the spread of HLB in citrus growing areas. Conclusions. The strains A. crateriforme were identified with a mortality percentage of 90%, M. anisopliae with 85%, H. citriformis with 68%, I. fumosorosea 65% and T. harzianum with 50%, they had an endophytic entomopathogenic behavior, and it was shown that the five strains colonized persian lime trees by the method of direct flooding of conidia at the base of the stem and roots, mummifying adults of the citrus psyllid under greenhouse conditions.

Keywords


endophyte fungi; persian lime; flood method; asian psyllid.

Full Text:

PDF

References


Alcántara-Vargas, E., Espitia-López, J., Garza-López, P.M. and Ángel-Cuapio, A., 2020. Producción y calidad de conidios de cepas de entomopatógenos del género Metarhizium anisopliae, aislados en zonas agrícolas del Estado de México. Revista Mexicana de Biodiversidad, 91, pp. 1-11. https://doi.org/10.22201/ib.20078706e.2020.91.2912

Augier, L., Arredondo-Bernal, H. C., Pérez, D., Martínez, D., Lizondo, M., Mellín-Rosas, M. A., del P. Pérez, M.L. and Gastaminza, G., 2023. Respuesta de Diaphorina citri Kuwayama a Cepas de Hongos Entomopatógenos en Argentina. Southwestern Entomologist, 48 (1), pp. 179-188. https://doi.org/10.3958/059.048.0117

Aragón, S.M. and Beltrán-Acosta, C., 2018. Los hongos endófitos en control biológico de fitopatógenos e insectos plaga. In: A.M. Cortes Padro. Control biológico de fitopatógenos, insectos y ácaros (Vol. 2.). Aplicaciones y perspectivas. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), pp. 850-877.

Berlanga-Padilla, A.M., Gallou, A., Ayala-Zermeño, M.A., Serna-Domínguez, M.G., Montesinos-Matías, R., Rodríguez-Rodríguez, J.C. and Arredondo-Bernal, H. C., 2018. Hongos entomopatógenos asociados a Diaphorina citri (Hemiptera: Liviidae) en Colima, México. Revista Mexicana de Biodiversidad, 89, pp. 986-1001. https://doi.org/10.22201/ib.20078706e.2018.4.2334

Chun-Hao, C., 2017. Fungi on banana in northern Taiwan. Thesis MSc. National Central University, p. 113. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=103821023103821023

Covacevich, F. and Consolo, V.F., 2014. Manual de protocolos, herramientas para el estudio y manipulación de hongos micorrícicos arbusculares y Trichoderma. 1ª ed. Mar del Plata, Empresa de Bio Tecnología.

DE Hoog, G.S., 1972. Studies in Mycology No.1, the genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov, Paises bajos. Editorial Board.

Domsch, K.H., Gams, W. and Anderson, T.H., 1980. Compendium of soil fungi. Vol 2. Universidad de Michigan, Academic Press.

Ferron, P., 1978. Biological control of insect pests by entomogenous fungi. Annual Review of Entomology, 23, pp. 409-442. https://doi.org/10.1146/annurev.en.23.010178.002205

García-García, M. A., Cappello-García, S., Lesher-Gordillo, J. M. and Molina-Martínez, R. F., 2014. Aislamiento y caracterización morfológica de los hongos entomopatógenos Beauveria bassiana y Metarhizium anisopliae. Horizonte Sanitario, 10(2), pp. 21-28. https://doi.org/10.19136/hs.a10n2.229

Gómez-Hurtado, K. D., 2022. Evaluación de la susceptibilidad de Diaphorina citri Kuwayama insecto vector del HLB frente a cepas fúngicas con potencial entomopatógeno en condiciones in vitro. Tesis, Microbiología Industrial, Facultad de Ciencias Exactas, Naturales y Agropecuarias, Universidad de Santander, Colombia, pp. 1-84.

Hodges, A.W. and Spreen, T.H., 2011. Economic impacts of citrus greening (HLB) in Florida, 2006/07–2010/11. University of Florida, pp 1-6. https://crec.ifas.ufl.edu/media/crecifasufledu/extension/plant-pathology-/greening/pdf/FE90300.pdf

Humber, R.A., 2012. Identification of entomopathogenic fungi. In: L.A. Lacey. 2th. Manual of techniques in insect pathology, 2th. Londres: Academic Press. pp. 151-187. https://doi.org/10.1016/B978-0-12-386899-2.00006-3

Jae-Wook, C., Jung-Min, L., Seok-Yong, P. and Ahn-Heum, E., 2022. Acrodontium burrowsianum and Pestalotiopsis humicola: two reviously unrecorded fungal species isolated from conifer leaves in Korea. The Korean Journal of Mycology, 50(4), pp. 311-318. https://doi.org/10.4489/KJM.20220033

Jones, J.D.G. and Dangl, J.L., 2006. The plant immune system. Nature, 444, pp. 323-329. https://doi.org/10.1038/nature05286

Joseph, R.A., Masoudi, A., Valdiviezo, M.J., Keyhani, N.O., 2024. Discovery of Gibellula floridensis from Infected spiders and analysis of the surrounding fungal entomopathogen community. Journal of fungi, 10, pp. 694. https://doi.org/10.20944/preprints202409. 0736.v1

Karthi, S., Vasantha-Srinivasan, P., Senthil-Nathan, S., Soo-Han, Y., Subramanian-Shivakumar, M., Murali-Baskaran, R.K.., Kalaivani, K., Radhakrishnan, N. Park, K.B. and Malafaia. G., 2024. Entomopathogenic fungi promising biocontrol agents for managing lepidopteran pests: review of current knowledge, Biocatalysis and Agricultural Biotechnology, 58, pp. 103146. https://doi.org/10.1016/j.bcab.2024.103146

Lezama-Gutiérrez, R., Galván-Gutiérrez, G., Contreras-Bermúdez, Y., Díaz-Flores, S., Reyes-Martínez, G., Barba-Reynoso, M. et al. 2011. Presencia natural y patogenicidad de los hongos Metarhizium anisopliae y Cordyceps bassiana (Ascomycetes) en ninfas y adultos de Diaphorina citri (Hemiptera: Psyllidae) en el estado de Colima. In: M. Elías-Santos, K. Arévalo-Niño, I. Quintero-Zapata, C. Solís-Rojas, C. F Sandoval-Coronado, H. A. Luna-Olvera et al. (Eds.), Memorias del XXXIV Congreso Nacional de Control Biológico, pp. 90-96.

Mantzoukas, S. and Eliopoulos, P.A., 2020. Endophytic entomopathogenic fungi: a valuable biological control tool against plant pests. Applied Sciences, 10, pp. 1-13. https://doi.org/10.3390/app10010360

Mellín-Rosas, M.A. and Arredondo-Bernal, H.C., 2011. Generación de tecnología para el manejo de Diaphorina citri mediante el uso de hongos entomopatógenos. In: H.C. Arredondo-Bernal., J.A. Sánchez-González, and Mellín-Rosas, M.A. Taller Subregional de Control Biológico de Diaphorina citri, vector del HLB. Centro Nacional de Referencia de Control Biológico, CNRF-DGSVSENASICA-SAGARPA, pp. 55-57. https://www.fao.org/4/as132s/as132s.pdf

Moore, D., Bateman, R.P., Carey, M. and Prior, C., 1995. Long-term storage of Metarhizium flavoviride conidia in oil formulations for the control of locusts and grasshoppers. Biocontrol Science and Technology, 5(2), pp. 193-200. https://doi.org/10.1080/09583159550039918

Ortiz-Espinoza, E., Villegas-Rodríguez, F., Ramírez-Tobías, H.M., Hernández-Arteaga, L.E. Del S. and Marín-Sánchez, J., 2020. La inoculación con hongos endófitos entomopatógenos en semilla genera una respuesta fisiológica y promueve el crecimiento vegetal en plantas de chile poblano en invernadero. Nova scientia, 12(25), pp.1-27. https://doi.org/10.21640/ns.v12i25.2586

Pérez-González, O., Rodríguez-Villarreal R. A., López-Arroyo, J.I., Maldonado-Blanco, M. G. and Rodríguez-Guerra, R., 2015. Mexican strains of Hirsutella isolated from Diaphorina citri (Hemiptera: Liviidae): morphologic and molecular characterization. Florida Entomologist, 98(1), pp. 290-297. https://doi.org/10.1653/024.098.0147

Prabhugaonkar, A. and Pratibha, J., 2017. Isolation of Acrodontium crateriforme as a pitcher trap inquiline. Current Research in Environmental & Applied Mycology Journal of Fungal Biology, 7(3), pp. 203-207. https://doi.org/10.5943/cream/7/3/7

Rubel, F. and Kottek, M., 2010. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19 (2), pp. 135-141. https://doi.org/10.1127/0941-2948/2010/0430

Sahayaraj, K. and Namasivayam, S.K.R., 2008. Mass production of entomopathogenic fungi using agricultural products y byproducts. African Journal of Biotechnology, 7(12), pp. 1907-1910. https://doi.org/10.5897/AJB07.778

Sánchez-Peña., S.R., Juan-Lara, J.S. and Medina, R.F., 2011. Occurrence of entomopathogenic fungi from agricultural and natural ecosystems in Saltillo, México, and their virulence towards thrips and whiteflies. Journal of insect science, 11(1), pp. 1-10. https://doi.org/10.1673/031.011.0101

SIAP., 2023. Anuario estadístico de la producción agrícola 2022. Servicio de Información Agroalimentaria y Pesquera. http://nube.siap.gob.mx/cierreagricola

Sun, P.F., Lu, M.R., Liu, Y.C., Shaw, B.J.P., Lin, C.P., Chen, H.W., Lin, Y.F., Hoh, D.Z., Ke, H.M., Wang, I.F., Lu, M.J., Young, E.B., Millett, J., Kirschner, R., Lin, Y.J., Chen, Y.L. and Tsai, I.J., 2024. An acidophilic fungus promotes prey digestion in a carnivorous plant. Nature Microbiology, 9(10), pp. 2522-2537. https://doi.org/10.1038/s41564-024-01766-y

Sui, L., Yang, L., Zhou, L., Li, N., Li, Q. and Zhang, Z., 2023. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Frontiers in Microbiology, 14, pp. 1-11. https://doi.org/10.3389/fmicb.2023.1227269

Wakil, W., Boukouvala, M.C., Kavallieratos, N.G., Naeem, A., Ghazanfar, M.U. and Alhewairini, S.S., 2024. Impact of three entomopathogenic fungal isolates on the growth of tomato plants-ectoapplication to explore their effect on Tetranychus urticae. Agronomy, 14(4), pp. 1-16. https://doi.org/10.3390/agronomy14040665

Zheng, Y., Liu, Y., Zhang, J., Liu, X., Ju, Z., Shi, H., Mendoza-Mendoza, A. and Zhou, W., 2023. Dual role of endophytic entomopathogenic fungi: induce plant growth and control tomato leaf miner Phthorimaea absoluta. Pest Management Science, 79(11), pp. 4557-4568. https://doi.org/10.1002/ps.7657




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.57333

DOI: http://dx.doi.org/10.56369/tsaes.5733



Copyright (c) 2025 Alejandro Salinas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.