Morphological alterations in flowers of Capsicum annuum and C. chinense due to increase in temperature and CO2

Mauricio Castillo, Jade Pereyda González, Fabiola M. Ríos Bolívar, Rubén Andueza Noh, Laura Yáñez Espinosa, Neith Pacheco López, Emanuel Hernández Núñez, René Garruña

Abstract


Background: Temperature and atmospheric CO₂ concentration strongly influence the biological cycle of plants, particularly during the reproductive stage. These environmental factors have been altered by anthropogenic activity, affecting flower morphology and fertility. Objective: To evaluate the floral morphology of Capsicum annuum and C. chinense under high temperature and elevated CO₂ conditions. Methodology: Plants were grown in four controlled-environment chambers: T1 = control (30 °C, 400 µmol mol⁻¹), T2 = 30 °C and 1200 µmol mol⁻¹, T3 = 40 °C and 400 µmol mol⁻¹, and T4 = 40 °C and 1200 µmol mol⁻¹. Morphometric traits of sepals, petals, androecium, and gynoecium were recorded throughout flower development. Results: In C. annuum, flowers from T2 were larger from the earliest stages, significantly surpassing the other treatments after day 13 and reaching their maximum size on day 19 (19.1 ± 0.27 mm). In C. chinense, the same treatment reached its largest size on day 17 (13.3 mm). Elevated CO₂ increased petal and ovary area in both species, whereas high temperature reduced filament length, style width, ovary diameter, and the number of ovules per ovary. It also decreased pollen quantity and viability. In all treatments, flower temperature was higher than ambient air temperature. Implications: Elevated CO₂ partially offset the negative effects of heat stress by promoting floral organ growth; however, high temperature impaired reproductive structures and potential fertility. Conclusion: Elevated CO₂ enhanced floral development in Capsicum species, whereas high temperature reduced pollen viability and reproductive efficiency, potentially limiting fruit set under future climate change scenarios.

Keywords


Anthers; cells; ovary; petals; sepals.

Full Text:

PDF

References


Aloni, B., Pressman, E. and Karni, L., 1999. The effect of fruit load, defoliation and night temperature on the morphology of pepper flowers and on fruit shape. Annals of Botany, 83, pp. 529–534. https://doi.org/10.1006/anbo.1999.0852

Altieri, M. and Nicholls, C., 2008. Los impactos del cambio climático sobre las comunidades campesinas y de agricultores tradicionales y sus respuestas adaptativas. Agroecología, 3, pp. 7–28. https://revistas.um.es/agroecologia/article/view/95471

Bita, C.E. and Gerats, T., 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, p. 273. https://doi.org/10.3389/fpls.2013.00273

Brukhin, V., Hernould, M., González, N., Chevalier, C. and Mouras, A., 2003. Flower development schedule in tomato Lycopersicon esculentum cv. Sweet Cherry. Sexual Plant Reproduction, 15, pp. 311–320. https://doi.org/10.1007/s00497-003-0167-7

Carvalho, S., Abi-Tarabay, H. and Heuvelink, E., 2005. Temperature affects Chrysanthemum flower characteristics differently during three phases of the cultivation period. The Journal of Horticultural Science and Biotechnology, 80, pp. 209–216. https://doi.org/10.1080/14620316.2005.11511919

Castro, M. and Galati, B., 2012. Desarrollo de la antera y formación del grano de polen en Cestrum bigibbosum Francey (Solanaceae). Pittieria, 36, pp. 67–76. http://erevistas.saber.ula.ve/index.php/pittieria/article/view/6550/6364

Chaves-Barrantes, N. and Gutiérrez-Soto, M., 2017. Respuestas al estrés por calor en los cultivos. II. Tolerancia y tratamiento agronómico. Agronomía Mesoamericana, 28, pp. 255–271. http://dx.doi.org/10.15517/am.v28i1.21904

Chiquini-Medina, R., Castillo-Aguilar, C., López-Castilla, L. and Quej-Chi, V., 2019. Caracterización varietal del chile habanero (Capsicum chinense Jacq.) var. Rosita. Agro Productividad, 12, pp. 61–66. https://doi.org/10.32854/agrop.v0i0.543

Cohen, B. and David-Schwartz, P., 2012. CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper. Journal of Experimental Botany, 63, pp. 4947–4957. https://doi.org/10.1093/jxb/ers172

Coen, E.S. and Meyerowitz, E.M., 1991. The war of the whorls: genetic interactions controlling flower development. Nature, 353, pp. 31–37. https://doi.org/10.1038/353031a0

Craufurd, P.Q. and Wheeler, T.R., 2009. Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60, pp. 2529–2539. https://doi.org/10.1093/jxb/erp196

Devasirvatham, V., Gaur, P.M., Mallikarjuna, N., Tokachichu, R.N., Trethowan, R.M. and Tan, D.K.Y., 2012. Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Functional Plant Biology, 39, pp. 1009–1018. https://doi.org/10.1071/FP12033

Erickson, A. and Markhart, A., 2002. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell and Environment, 25, pp. 123–150. https://doi.org/10.1046/j.0016-8025.2001.00807.x

Escalera-Ordaz, A., Guillén, H., Lara, M., Lemus, C., Rodríguez, J. and Valdivia, R., 2019. Characterization of cultivated varieties of Capsicum pubescens in Michoacán, México. Revista Mexicana de Ciencias Agrícolas, 23, pp. 239–251. https://doi.org/10.29312/remexca.v0i23.2024

Fernández-Muñoz, R. and Cuartero, J., 1991. Effects of temperature and irradiance on stigma exsertion, ovule viability and embryo development in tomato. Journal of Horticultural Science, 66, pp. 395–401. https://doi.org/10.1080/00221589.1991.11516167

Florido, M. and Álvarez, M., 2015. Some aspects related to heat tolerance in tomato (Solanum lycopersicum L.). Cultivos Tropicales, 36, pp. 77–95. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362015000500008

Garruña-Hernández, R., Canto, A., Mijangos-Cortés, J., Islas, I., Pinzón, L. and Orellana, R., 2012. Changes in flowering and fruiting of Habanero pepper in response to higher temperature and CO?. Journal of Food, Agriculture & Environment, 10, pp. 802–808. https://doi.org/10.1234/4.2012.3516

Gómez, J., Flores, R. and Monterroso, A., 2020. Aptitud actual bajo escenarios de cambio climático para tres cultivos en México. Revista Mexicana de Ciencias Agrícolas, 4, pp. 777–788. https://doi.org/10.29312/remexca.v11i4.2463

González, A., 2018. ImageJ: una herramienta indispensable para medir el mundo biológico. Sociedad Argentina de Botánica, Folium Relatos Botánicos, 1, pp. 1–17

Granados-Ramírez, R. and Sarabia-Rodríguez, A., 2013. Cambio climático y efectos en la fenología del maíz en el DDR-Toluca. Revista Mexicana de Ciencias Agrícolas, 4, pp. 435–446. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342013000300008

Hedhly, A., 2011. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74, pp. 9–16. https://doi.org/10.1016/j.envexpbot.2011.03.016

Hernández-Ramírez, C., Bonales, J. and Ortiz, C., 2014. Models of agricultural vulnerability to the effects of climate change. CIMEXUS, 2, pp. 31–48. https://www.cimexus.umich.mx/index.php/cim1/article/view/191

Hötzel, G. and Croome, R., 1999. A phytoplankton methods manual for Australian freshwater. Canberra: Land and Water Resources Research and Development Corporation, pp. 22–99.

Jagadish, S.V.K., Bahuguna, R.N., Djanaguiraman, M., Gamuyao, R., Prasad, P.V.V. and Craufurd, P.Q., 2016. Implications of high temperature and elevated CO? on flowering time in plants. Frontiers in Plant Science, 7, p. 913. https://doi.org/10.3389/fpls.2016.00913

Ku-Ruiz, C. and Sosenski, P., 2021. El calor de las flores: plantas termogénicas y sus polinizadores. Cuadernos de Biodiversidad, 61, pp. 22–27. https://doi.org/10.14198/cdbio.2021.61.03

Levy, A., Rabinowitch, H. and Kedar, N., 1978. Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica, 27, pp. 211–218. https://doi.org/10.1007/BF00039137

Lynch, J., Cain, M., Frame, D. and Pierrehumbert, R., 2021. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO?-emitting sectors. Frontiers in Sustainable Food Systems, 4, p. 518039. https://doi.org/10.3389/fsufs.2020.518039

McCree, K.J. and Davis, S.D., 1974. Effect of water stress and temperature on leaf size and on size and number of epidermal cells in grain sorghum. Crop Science, 14, pp. 751–755. https://doi.org/10.2135/cropsci1974.0011183X001400050041x

Meco, V., Egea, I., Albaladejo, I., Campos, J., Morales, B., Ortíz-Atienza, A., Capel, C., Angosto, T., Bolarín, M. and Flores, F., 2019. Identification and characterisation of the tomato parthenocarpic mutant high fruit set under stress (hfs) exhibiting high productivity under heat and salt stress. Annals of Applied Biology, 174, pp. 166–178. https://doi.org/10.1111/aab.12486

Mendoza, P. and Encina, A., 2018. Bases moleculares de la floración. Ambiociencias, 15, pp. 31–42. https://doi.org/10.18002/ambioc.v0i0.5557

Moreno, Y. and Miller, A., 1992. Genotype, temperature, and fall-applied ethephon affect plum flower bud development and ovule longevity. Journal of the American Society for Horticultural Science, 117, pp. 14–21. https://doi.org/10.21273/JASHS.117.1.14

Pereyda-González, J.M., Andueza-Noh, R.H., Noh-Kú, J.G., Carrera-Martín, M. and Garruña, R., 2022. High temperature and elevated CO? modify phenology and growth in pepper plants. Agronomy, 12, p. 1836. https://doi.org/10.3390/agronomy12081836

Pérez-Pastrana, J., Islas-Flores, I., Bárány, I., Álvarez-López, D., Canto-Flick, A., Canto-Canché, B., Peña-Yama, L., Muñoz-Ramírez, L., Avilés-Viñas, S., Testillano, P. and Santana-Buzzy, N., 2018. Development of the ovule and seed of Habanero chili pepper (Capsicum chinense Jacq.): anatomical characterization and immunocytochemical patterns of pectin methyl-esterification. Journal of Plant Physiology, 230, pp. 1–12. https://doi.org/10.1016/j.jplph.2018.08.005

Polowick, P. and Sawhney, V., 1985. Temperature effects on male fertility and flower and fruit development in Capsicum annuum L. Scientia Horticulturae, 25, pp. 117–127. https://doi.org/10.1016/0304-4238(85)90083-4

Polowick, P. and Sawhney, V., 1988. High temperature induced male and female sterility in canola (Brassica napus). Annals of Botany, 62, pp. 83–86. https://doi.org/10.1093/oxfordjournals.aob.a087639

Ramírez-Godina, F., Robledo-Torres, V., Foroughbakhch-Pournavab, R., Benavides-Mendoza, A. and Alvarado-Vázquez, M., 2013. Viabilidad de polen, densidad y tamaño de estomas en autotetraploides y diploides de Physalis ixocarpa. Botanical Sciences, 91, pp. 11–18. https://doi.org/10.17129/botsci.399

Sailaja, K., Raja, R., Reddy, V.R., Kakani, V.G. and Duli, Z., 2005. Interactive effects of carbon dioxide, temperature and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination and tube lengths. Journal of Experimental Botany, 56, pp. 725–736. https://doi.org/10.1093/jxb/eri044

Santiago, J. and Borrego, F., 2016. Evaluation of tomato (Lycopersicon esculentum Mill.) in greenhouse conditions: phenological and physiological criteria. Agronomía Mesoamericana, 9, pp. 59–65. https://doi.org/10.15517/am.v9i1.24633

Sawhney, K., 1982. The role of temperature and its relationship with gibberellic acid in the development of floral organs of tomato (Lycopersicon esculentum). Canadian Journal of Botany, 61, pp. 1258–1265. https://doi.org/10.1139/b83-133

Soto, F., Plana, R. and Hernández, N., 2009. Influencia de la temperatura en la duración de las fases fenológicas del trigo harinero (Triticum aestivum ssp. aestivum) y triticale (×Triticum secale Wittmack) y su relación con el rendimiento. Cultivos Tropicales, 30, pp. 32–36. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362009000300014

Tarchoun, N., Teixeira, J., Mahmoud, M. and Mougou, A., 2013. Assessment of abnormalities in reproductive organs of hot pepper induced by low night temperature. International Journal of Vegetable Science, 19, pp. 177–187. https://doi.org/10.1080/19315260.2012.699506

Ud, J., Khan, S., Khan, A., Qayyum, A., Sarfraz, K. and Jenks, M., 2015. Evaluation of potential morpho-physiological and biochemical indicators in selecting heat-tolerant tomato (Solanum lycopersicum Mill.) genotypes. Horticulture, Environment and Biotechnology, 56, pp. 769–776. https://doi.org/10.1007/s13580-015-0098-x

Van der Kooi, C.J., 2016. Plant biology: flower orientation, temperature regulation and pollinator attraction. Current Biology, 26, pp. 1143–1145. https://doi.org/10.1016/j.cub.2016.08.071

Zhang, L., Ampatzidis, Y. and Whiting, M., 2015. Sweet cherry floral organ size varies with genotype and temperature. Scientia Horticulturae, 182, pp. 156–164. https://doi.org/10.1016/j.scienta.2014.09.051




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.53696

DOI: http://dx.doi.org/10.56369/tsaes.5369



Copyright (c) 2025 Mauricio Castillo Colli, Jade Pereyda González, Fabiola M. Ríos Bolívar, Rubén Andueza Noh, Laura Yáñez Espinosa, Neith Pacheco López, Emanuel Hernández Núñez, René Garruña

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.