EVALUATION OF SALICYLIC ACID IN THE ex vitro ACCLIMATATION OF MICROPLANTS OF Laelia autumnalis (Lex.) Lind., Epidendrum sp. AND Encyclia sp.

Martha Elena Mora-Herrera, Juan Manuel Olivares-Aguilar, Diana Yatzil Reyes-Araujo, Stephanie Elizabeth Ceballos-Vásquez, Rómulo García-Velasco

Abstract


Background: One of the main problems of in vitro propagation of orchids is the loss of specimens during acclimatization. This stage is crucial to promote morphological and physiological changes that allow their adaptation to ex vitro conditions. Salicylic acid (SA), by participating as a signal molecule for the induction of tolerance to abiotic and biotic stress and stimulating growth, can increase survival. Objective: The objective of this work was to evaluate the effect of salicylic acid on the ex vitro acclimatization of microplants of Laelia autumnalis, Epidendrum sp., and Encyclia sp. Methodology: The experiments started from a permanent source of biological material from microplants of L. autumnalis, Epidendrum sp., and Encyclia sp., grown in Murashige-Skoog (MS) medium. For the treatments, microplants between 0.5 and 0.7 mm were subcultured to MS by adding 0, 1, 10 or 100 μM of AS for 120 ± 4 days under in vitro conditions. At the end of that time, the length of the stem and root, and the fresh weight of the microplants of the 3 species, were evaluated. The plants were subsequently transplanted into seedbeds with pine bark and sphagnum moss and watered twice a week and kept in a growth chamber at room temperature for acclimatization; after 30 days survival was evaluated. Results: Microplants precultured in AS showed differential response in the evaluated variables. Stem and root length and fresh weight increased in Epidendrum sp., and Encyclia sp, especially in the 10 μM treatment, while L. autumnalis showed inhibition in stem and root length and there was only an increase in fresh weight. The microplants of the 3 species precultured with 10 μM of AS significantly increased survival compared to the control. In L. autumnalis and Epidendrum sp., there was also an increase in survival in the preculture of 1 μM of AS and for Encyclia sp. in 100 μM of AS. Implications. Although AS has potential for ex vitro acclimatization of orchids, the variability in response between species should be considered and natural conditions for acclimatization should also be evaluated, with a view to contributing to repopulating orchid communities in their natural environment. Conclusion: AS increases survival under ex vitro conditions, and growth differentially in orchid microplants.

Keywords


Signal molecule; in vitro culture; biodiversity; abiotic stress.

Full Text:

PDF

References


Alvarenga-Venutolo, S., Abdelnour-Esquivel, A. and Villalobos Aránbula, V., 2007. Conservación in vitro de chayote (Sechium Edule). Agronomía Mesoamericana, 18(1), pp. 65-73. https://doi.org/10.15517/am.v18i1.5037

Bagautdinova, Z.Z., Omelyanchuk, N., Tyapkin, A.V., Kovrizhnykh, V.V., Lavrekha, V.V. and Zemlyanskaya, E.V., 2022. Salicylic acid in root growth and development. International Journal of Molecular Sciences, 23, p.2228. https://doi.org/10.3390/ijms23042228

Brush, S. and Stephen, B., 1995. In situ conservation of landraces in centers of crop diversity. Crop Science, 35(2), pp. 346-354. https://doi.org/10.2135/cropsci1995.0011183X003500020009x

Camacho-Villa, T. C., Aparicio-Sánchez, S., Costich, D.E. and Vidal-Martínez V.A., 2024. Dinámicas de mantenimiento y de pérdida in situ del maíz raza Jala. Revista Mexicana De Ciencias Agrícolas, 15(1), p.e3247. https://doi.org/10.29312/remexca.v15i1.3247

Campos, R., Joseph, A.C.M., Campos, R.S., Chico, R.J and Cerna, R.L., 2020. Establecimiento de un protocolo de desinfección y micropropagación in vitro de "caoba" Swietenia macrophylla King (Meliaceae). Arnaldoa, 27(1), pp. 141-156. https://dx.doi.org/10.22497/arnaldoa.271.27107

CONABIO, 2022. ¿Qué es la biodiversidad?, Biodiversidad mexicana, Biodiversidad: nuestra defensa natural más fuerte contra el cambio climático (Consultado 29 de agosto de 2024). https://www.biodiversidad.gob.mx/biodiversidad/que_es.html

Cruz, E.G. and Mora-Herrera, M.E., 2018. Efecto del ácido salicílico (AS) en la supervivencia y la adaptación de Encyclia sp. en condiciones ex vitro. Primer Congreso Mexicano de Fisiología Vegetal. Colegio de Postgraduados, Texcoco Estado de México de 24 al 26 de octubre de 2018. p 111.

Echevarría-Machado, I., Escobedo-GM, R.M. and Larqué-Saavedra, A., 2007. Responses of transformed Catharanthus roseus roots to femtomolar concentrations of salicylic acid. Plant Physiology and Biochemistry, 45(6-7), pp.501-507. https://doi.org/10.1016/j.plaphy.2007.04.003

Espinosa-Reyes, Á., Silva-Pupo, J.J., Bahi-Arevich, M. and Romero-Cabrera, D., 2019. Influencia del tamaño de las plantas in vitro y tipo de sustrato en la aclimatación de Morus alba L. Pastos y Forrajes, 42(1), pp. 23-29.

Espinoza, N.O., Estrada, R., Silva-Rodríguez, D., Tovar, P., Lizarraga, R. and Dodds, J.H., 1986. The potato: a model. Crop Plant for Tissue Culture. Outlook on Agricultura, 15, pp. 21-26. https://doi.org/10.1177/0030727086015001

Gómez-Llaca, J.A., 2015. Uso del ácido acetilsalicílico en la conservación in vitro bajo mínimo crecimiento de dos clones de yuca (Manihot esculenta Crantz) y determinación de su viabilidad. Tesis de maestría en Ciencias. Universidad Central de Venezuela. Facultad de Agronomía. http://hdl.handle.net/10872/11837

Harris, V.C., Landero, B.I., Alvarado, V.J.F. and Hernández, G.R., 2021. Germinación de orquídeas utilizando un método sencillo y económico, reproducible en ambientes no óptimos. Revista mexicana de ciencias agrícolas, 12(5), pp. 915-919. https://doi.org/10.29312/remexca.v12i5.2555

Hernández-Bello, M. and Mora-Herrera, M.E., 2021. Evaluación de raíz de microplantas de Laelia autumnalis precultivadas en ácido salicílico en la organogénesis. 3º congreso Mexicano de Fisiología Vegetal, 1º congreso internacional, Tepatitlán de Morelos, Jalisco. https://www.congreso.redfisiologosvegetales.com.mx/memoriastercercongreso/

Khan, M.I.R., Asgher, M and Khan, N.A., 2014. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, pp. 67-74. https://doi.org/10.1016/j.plaphy.2014.03.026

Khodary, S.E.A., 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture and Biology, 6, pp. 5-8.

Larqué-Saavedra, A. and Martín-Mex, R., 2007. Effects of salicylic acid on the bioproductivity of plants. En Hayat, S; Ahmad, A. eds. Salicylic acid a plant hormone. Springer. pp. 15-23. https://doi.org/10.1007/1-4020-5184-0_2.

Larqué-Saavedra, A., Martín-Mex, R., Nexticapan-Garcéz, Á., Vergara-Yoisura, S. and Gutiérrez-Rendón, M., 2010. Efecto del ácido salicílico en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.). Revista Chapingo. Serie horticultura, 16(3), pp. 183-187. https://www.scielo.org.mx/scielo.php?pid=S1027-152X2010000300006&script=sci_arttext

Lee, Y.I. and Lee, N., 2003. Plant regeneration from protocorm-derived callus of Cypripedium formosanum. In in vitro Cellular & Developmental Biology-Plant, 39, pp. 475-479. https://doi.org/10.1079/IVP2003450

Lopez-Delgado, H. and Scott, I.M., 1997. Induction of in vitro tuberization of potato micro,plants by acetylsalicylic acid. Journal of Plant. Physiology, 151(1), pp. 74-78. https://doi.org/10.1016/s076-1617(97)80039-9

Mady, M., 2009. Effect of foliar application with salicylic acid and vitamin e on growth and productivity of tomato (Lycopersicon esculentum, Mill.). Plant Journal of Plant Production, 34(6), pp. 6715-6726. https://doi.org/10.21608/jpp.2009.118654

Menchaca-García, R.A. and Moreno-Martínez D., 2011. Conservación de orquídeas, una tarea de todos. Primera edición, Universidad Autónoma Chapingo, Texcoco, Estado de México. p 45 https://www.gob.mx/cms/uploads/attachment/file/244895/Conservacion_de_orqu_deas_una_tarea_de_todos.pdf

Mora-Herrera, M.E., López-Delgado, H., Castillo-Morales, A. and Foyer, C.H., 2005. Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiologia Plantarum, 125(4), pp. 430-440. https://doi.org/10.1111/j.1399-3054.2005.00572.x

Murashige, T. and Skoog, F., 1962. A Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 15, pp. 473-497.

Novak, S.D., Luna, L.J. and Gamage, R.N., 2014. Función de la auxina en el desarrollo de las orquídeas. Plant Signaling & Behavior, 9(10), pp. e972277-8. https://doi.org/10.4161/psb.32169

Peng, Y., Yang, J., Li, X. and Zhang, Y., 2021. Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology, 72, pp. 761-791. https://doi.org/10.1146/annurev-arplant-081320-092855

Podwyszynska, M., Orlikoska, T., Trojaj, A. and Wojtania, A., 2022. Application and improvement of in vitro culture systems for commercial production of ornamental, fruit, and industrial plants in poland. Acta Societatis Botanicorum Poloniae, 91, pp. 1-29. https://doi.org/10.5586/asbp.914

Poot-Poot, W.A; Delgado-Martínez, R., Castro-Nava, S., Segura-Martínez, M.T., Carreón-Pérez, A. and Hernández-Martínez, J.G., 2018. Efecto del ácido salicílico en la aclimatación pre-trasplante de poblaciones nativas de tomate. Horticultura brasileña, 36, pp. 480-485. http://dx.doi.org/10.1590/s0102-053620180409

Rivas-San Vicente, M. and Plasencia, J., 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62(10), pp. 3321-3338. https://doi.org/10.1093/jxb/err031

Salazar-Mercado, S.A., 2012. Germinación asimbiótica de semillas y desarrollo in vitro de plántulas de Cattleya mendelii Dombrain (Orchidaceae). Acta Agronómica, 61(1), pp. 69-79. http://www.scielo.org.co/pdf/acag/v61n1/v61n1a09.pdf

Sánchez-Sotomayor, H.J., Orellana-García, A., Roel, B.I.A., Marín, B.M., Peña, R.G., Andia, A.V. and Estrada, J.R.V., 2021. Conservación ex situ mediante el establecimiento de cultivo in vitro de semillas de Prosopis limensis “Huarango” de Ica, Perú. Manglar, 18(4), pp. 427-433. http://dx.doi.org/10.17268/manglar.2021.055

SEMARNAT, 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario oficial. https://www.profepa.gob.mx/innovaportal/file/435/1/NOM_059_SEMARNAT_2010.pdf

Shimura, H. and Koda, Y., 2004. Micropropagation of Cypropedium macranthos var. rebunense through protocorms-like bodies derived from mature seeds. Plant Cell, Tissue and Organ Culture, 78, pp. 273-276. https://doi.org/10.1,3/B:TICU.0000025641.49000.b5

Silva, J.T., Hossain, M.M., Sharma, M., Dobránszki, J., Cardoso, J.C. and Zeng, S., 2017. Aclimatization of in vitro derived Dendrobium. Horticultural Plant Journal, 3(3), pp. 110-124. https://doi.org/10.1016/j.hpj.2017.07.009

Sommer, R.J., 2020. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics, 215(1), pp. 1-13. https://doi.org/10.1534/genetics.120.303163

Soto, V.M.A., Morales, S.F.J. and Rodríguez, A.P.J., 2021. Germinación y crecimiento in vitro de especies de orquídeas amenazadas en comunidades aledañas al Biotopo del Quetzal. Informe. Consultado 30 de agosto de 2024. https://digi.usac.edu.gt/bvirtual/informes/puirna/INF-2020-76.pdf

Soto-Arenas, M, Solano G.R. and Hágsater, E., 2007. Risk of extinction and patterns of diversity loss in Mexican orchids. Lankesteriana: International Journal on Orchidology, 7(1-2), pp. 114-121. https://doi.org/10.15517/lank.v7i1-2.18449

Swarts, N.D. and Dixon, K.W., 2009. Perspectives on orchid conservation in botanic gardens. Trends in Plant Science 14(11), pp. 590-598. https://doi.org/10.1016/j.tplants.2009.07.008

Tejeda-Sartorius, O., Téllez-Velasco, M.A.A. and Escobar-Aguayo, J.J., 2018. Estado de conservación de orquídeas silvestres (Orchidaceae). Agro Productividad, 10(6), pp. 3-12. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/1031

Tucuch-Haas, C., Alcántar-González, G., Salinas-Moreno, Y., Trejo-Téllez, L.I., Volke-Haller, V.H. and Larqué-Saavedra, A., 2017. Aspersión foliar de ácido salicílico incrementa la concentración de fenoles en el grano de maíz. Revista Fitotecnia Mexicana, 40(2), pp. 235-238. https://doi.org/10.35196/rfm.2017.2.235-238

Vasco-Ávila, C.A., 2020. Evaluación del enraizamiento in vitro y aclimatación de plántulas de la orquídea Epidendrum ibaguense. Proyecto de Experimentación de Tecnólogo en Gestión y Producción Hortícola: Universidad Militar Nueva Granada Cajicá Cundinamarca, Colombia. http://hdl.handle.net/10654/35961

Zeng, S., Huang, W., Wu, K., Zhang, J., Da Silva-Teixeira, J.A. and Duan, J., 2016. Propagación in vitro de orquídeas Paphiopedilum. Reseñas Críticas en Biotecnología, 36(3): pp. 521-534. http://doi.org/10.3109/07388551.2014.993585




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.53014

DOI: http://dx.doi.org/10.56369/tsaes.5301



Copyright (c) 2025 MARTHA ELENA MORA HERRERA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.