COMPARISON OF IMPROVED CLONES OF SWEET POTATO (Ipomoea batatas [L.] Lam) IN THE YIELD AND BIOETHANOL CONTENT OF RESERVING ROOTS

Roberto Hugo Tirado Malaver, Roberto Tirado-Lara, Nayla Fabian-Anastacio

Abstract


Background: Sweet potato (Ipomoea batatas L.) is a crop of great importance in social, economic and industrial terms due to its forage aptitude, high yield potential and quality of storage roots, necessary as human food and also as raw material for bioethanol production a promising substitute for fossil fuels or to boost alcohol production. Objective: To compare improved sweetpotato clones under different growing seasons and to select a promising new cultivar with high yield potential and bioethanol production from storage roots in Peru. Methodology: The combined analysis of variance was used during two seasons (summer and spring) in Lambayeque, Peru. The yield of storage roots was evaluated, with respect to the quality, the percentage of dry matter and the production of bioethanol were evaluated, which was analyzed by the enzymatic hydrolysis of the starch of four clones and a control variety. Results: The combined analysis of variance shows that the clones presented a significant effect on the variables under study. Likewise, the clone CIP 199071.8 with the highest yield of storage roots was identified during season 1 (summer) with an average of 67.4 ± 1.2 t ha-1 and in season 2 (spring) with 73.4 ± 0, 8 t ha-1 regarding the combined analysis obtained 70.4 ± 1.1 t ha-1. In addition, the present clone with an average of 28.9 ± 1.4% of dry matter stands out statistically, in fact the same clone 199071.8 reported the highest bioethanol production in season 1 (summer) with an average of 7089.6 ± 2, 2 L ha-1 of bioethanol and in season 2 (spring) it reached the highest bioethanol production with an average of 7875.1 ± 1.9 L ha-1. Regarding the combined analysis, it obtained 7553.2 ± 1.7 L ha-1 of bioethanol. Implications: The sweet potato clones had a significant effect on the yield and quality of the storage roots, a necessary source for human food or industrial input. Conclusion: The clone CIP 199071.8 reached the highest yield of storage roots, dry matter and bioethanol production during the two growing seasons (summer 2019 and spring 2019), therefore, it will be released as a new cultivar.

Keywords


alcohol; season; hydrolysis; raw material, storage roots.

Full Text:

PDF

References


Adebola, P. O., Shegro, A., Laurie, S. M., Zulu, L. N. and Pillay, M., 2013. Genotype x environment interaction and yield stability estimate of some sweet potato [Ipomoea batatas (L.) Lam] breeding lines in South Africa. Journal of Plant Breeding and Crop Science, 5, pp. 182-186. http://doi.org/10.5897/JPBCS2013.0387

Álvarez, C., González, A., Ballesteros, I., Negro, M. J., 2021. Production of xylooligo saccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion. Bioresour Technology, 342, pp. 125953. http://doi.org/10.1016/j.biortech.2021.125953

Anwar, M., Rasul, M. G. and Ashwath, N., 2019. The efficacy of multiple-criteria design matrix for biodiesel feedstock selection. Energy Conversion and Management, 198, pp. 111790. http://doi.org/10.1016/j.enconman.2019.111790

Arana, F. y Vilquiniche, W., 2017. Comparativo de rendimiento de tres clones de camote (Ipomoea batatas L.) bajo cuatro densidades de siembra en el Valle Del Santa – Ancash. Tesis. Universidad Nacional Del Santa. . Disponible en: [Consultado el 2 de marzo del 2022].

Ayeleso, T. B., Ramachela, K. and Mukwevho, E., 2016. A review of therapeutic potentials of sweet potato: Pharmacological activities and influence of the cultivar. Tropical Journal of Pharmaceutica research, 15, pp. 2751-2761. http://doi.org/10.4314/tjpr.v15i12.31

Buši?, A, Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M. I., Komes, D., Novak, S. and Šantek, B., 2018. Bioethanol production from renewable raw materials and its separation and purification: a review, food technol. Biotechnol, 56, pp. 289-311. http://doi.org/10.17113/ftb.56.03.18.5546

Cavalcanti, M. T., Farias, N. S., Cavalcante, A. N., Gonçalves, M. C., Silva, A. S. and Candeia, R. A., 2019. Morphological structure and crystallinity of ‘Rainha’ sweet potato starch by heat–moisture treatment. Polímeros, 29, pp. e2019016. http://doi.org/10.1590/0104-1428.03917

Carnevalle, T., Menezes, A., Gomes, A., Silva, M., Gaspareto, L. and Morais, P., 2022. Fungal amylases applied to the sweet potato starch for bioethanol production. Research, Society and Development, 11, pp. e136111032583. http://doi.org/10.33448/rsd-v11i10.32583

Chalwe, A., Chiona, M., Sichilima, S., Njovu, J., Chama, C. and Ndhlovu, D., 2017. Genotype stability index for root yield and tolerance to Sweet potato weevil (Cylas puncticolis): A tool for identifying climate smart varieties. Open Agriculture, 2, pp. 166-174. https://doi.org/10.1515/opag-2017-0017

Díaz, M. J., Moya, M. and Castro, E., 2022. Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100. Agronomy, 12, pp. 874. http://doi.org/10.3390/agronomy12040874

Duan, W., Zhang, H., Xie, B., Wang, B. and Zhang, L., 2019. Impacts of nitrogen fertilization rate on the root yield, starch yield and starch physicochemical properties of the sweet potato cultivar Jishu 25. PLoS ONE, 14, pp. e0221351. http://doi.org/10.1371/journal.pone.0221351

Ebem, E., Afuape, S., Chukwu, S. and Ubi, B., 2021. Genotype × Environment Interaction and Stability Analysis for Root Yield in Sweet Potato [Ipomoea batatas (L.) Lam]. Frontiers in Agronomy, 3, pp. 665564. http://doi.org/10.3389/fagro.2021.665564

Flores, A., 2019. Evaluación de Rendimiento de Nueve Clones Promisorios de Ipomoea batatas L. “camote” en Barranca, Huaral y Cañete. Tesis. Universidad Nacional José Faustino Sánchez Carrión. Disponible en: [Consultado el 5 de febrero del 2022].

Hernández, M., Torruco, J., Guerrero, L. y Bentacur, D., 2008. Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28, pp. 718-726. http://doi.org/10.1590/S0101-20612008000300031

Jairoun, A. A., Al-Hemyari, S. S. and Shahwan, M., 2021. The pandemic of COVID-19 and its implications for the purity and authenticity of alcohol-based hand sanitizers: The health risks associated with falsified sanitizers and recommendations for regulatory and public health bodies. Research in social & administrative pharmacy, 17, pp. 2050–2051. http://doi.org/10.1016/j.sapharm.2020.04.014

Jena, N. and Kar, M. K., 2019. Ethanol production from various plant sources using Saccharomyces cerevisiae. International Journal of Chemical, 7, pp. 2968–2971.

Ghazanfar, M., Irfan, M., Nadeem, M., Shakir, H. A., Khan, M., Ahmad, I., Saeed, S., Chen, Y. and Chen, L., 2022. Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology. Fermentation, 8, pp. 148. http://doi.org/10.3390/fermentation8040148

Jin, Y, Fang, Y., Zhang, G., Zhou, L. and Zhao, H., 2012. Comparison of ethanol production performance in 10 varieties of sweet potato at different growth stages. Acta Oecol, 44, pp. 33-37. http://doi.org/10.1016/j.actao.2012.05.008

Karan, Y.B. and ?anli Ö.G., 2021. The assessment of yield and quality traits of sweet potato (Ipomoea batatas L.) genotypes in middle Black Sea region, Turkey. PLoS ONE, 16, pp. e0257703. http://doi.org/10.1371/journal.pone.0257703

Karuniawan, A., Maulana, H., Ustari, D., Dewayani, S., Solihin, M., Amien, S. and Arifin, M., 2021. Yield stability analysis of orange - Fleshed sweet potato in Indonesia using AMMI and GGE biplot. Heliyon, 7, pp. e06881. http://doi.org/10.1016/j.heliyon.2021.e06881

Lareo, C. and Ferrari, M.D., 2019. Sweet Potato as a Bioenergy Crop for Fuel Ethanol Production: Perspectives and Challenges. In: Bioethanol Production from Food Crops. Sustainable Sources, Interventions, and Challenges. Bhubaneswar, India. Academic Press. Pp. 115-147. http://doi.org/10.1016/B978-0-12-813766-6.00007-2

Laurie, S.M., Bairu, M.W. and Laurie, R.N., 2022. Analysis of the Nutritional Composition and Drought Tolerance Traits of Sweet Potato: Selection Criteria for Breeding Lines. Plants, 11, pp. 1804. http://doi.org/10.3390/plants11141804

Li, Y., Zhao, L., Lin, L., Li, E., Cao, Q. and Wei, C., 2022. Relationships between X-ray Diffraction Peaks, Molecular Components, and Heat Properties of C-Type Starches from Different Sweet Potato Varieties. Molecules, 27, pp. 3385. http://doi.org/10.3390/molecules27113385

Liao, L., Liu, H., Zengpeng, G. and Wu, W., 2019. Structural properties of sweet potato starch and its vermicelli quality as affected by heat-moisture treatment. International Journal of Food Properties, 22, pp. 1122-1133. http://doi.org/10.1080/10942912.2019.1626418

MINAGRI., 2019. Serie de Estadísticas de Producción Agrícola. Perú. Disponible en: http://frenteweb.minagri.gob.pe/sisca/

Neela, S. and Fanta. S., 2019. Review on nutritional composition of orange?fleshed sweet potato and its role in management of vitamin A deficiency. Food Science & Nutrition, 7, pp. 1920-1945. http://doi.org/10.1002/fsn3.1063.

Ngailo, S., Shimelis, H., Sibiya, J., Mtunda, K. and Mashilo, J., 2019. Genotype-by environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon, 5, pp. e01448. http://doi.org/10.1016/j.heliyon.2019.e01448

Rizzolo, J. A., Woiciechowski, A. L., Magalhães, A. I., Zevallos, L. A. and Soccol, C. R., 2021. The potential of sweet potato biorefinery and development of alternative uses. SN Applied Sciences 3, pp. 347. http://doi.org/10.1007/s42452-021-04369-y

Salelign, K. and Duraisamy, R., 2021. Sugar and ethanol production potential of sweet potato (Ipomoea batatas) as an alternative energy feedstock: processing and physicochemical characterizations. Heliyon, 7, pp. e08402. http://doi.org/10.1016/j.heliyon.2021.e08402

Saman, W. R., I. Yuliasih, M. Sugiarto., 2019. Physicochemical Characteristics and Functional Properties of White Sweet Potato Starch. International Journal of Engineering and Management Research, 9, pp. 53-57. http://doi.org/10.31033/ijemr.9.3.7

SENHAMI. s/f. Estación meteorológica de Pacora, Lambayeque. https://www.senamhi.gob.pe/?p=pronostico-meteorologico

Sukhang, S., Choojit, S., Reungpeerakul, T. and Sangwichien, C., 2020. Bioethanol production from oil palm empty fruit bunch with SSF and SHF processes using Kluyveromyces marxianus yeast. Cellulose, 27, pp. 301–314. ,http://doi.org/10.1007/s10570-019-02778-2

Swain, M. R., Mishra, J. and Thatoi, H., 2013. Bioethanol Production from Sweet Potato (Ipomoea batatas L.) Flour using Co-Culture of Trichoderma sp. and Saccharomyces cerevisiae in Solid-State Fermentation. Brazilian Archives Of Biology And Technology, 56, pp. 171-179. http://doi.org/10.1590/S151689132013000200002

Tang, C., Lu, Y., Jiang, B., Chen, J., Mo, X., Yang, Y. and Wang, Z., 2022. Energy, Economic, and Environmental Assessment of Sweet Potato Production on Plantations of Various Sizes in South China. Agronomy, 12, pp. 1290. http://doi.org/10.3390/agronomy12061290

Tirado-Lara, R., Tirado-Malaver, R., Mayta-Huatuco, E. and Amoros-Briones, W., 2020. Identificación de clones de papa con pulpa pigmentada de alto rendimiento comercial y mejor calidad de fritura: Estabilidad y análisis multivariado de la interacción genotipo-ambiente. Scientia Agropecuaria, 11, pp. 323 – 334. http://doi.org/10.17268/sci.agropecu.2020.03.04

Tirado, M., Tirado, L. R. and Mendoza, C. J., 2018. Interacción genotipo x ambiente en rendimiento de papa (Solanum tuberosum L.) con pulpa pigmentada en Cutervo, Perú. Chilean Journal of Agricultural & Animal Sciences, 34, pp. 191–198. http://doi.org/10.4067/S0719-38902018005000502

Tirado, M., Mendoza-Sáenz, J. and Tirado, L. R., 2021. Análisis multivariado para caracterizar y tipificar fincas productoras de papa (Solanum tuberosum L.) en Cutervo, Cajamarca, Perú. Tropical and Subtropical Agroecosystems, 24, pp. #106.

https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3744

Torquato, T. A., Rodrigues, I,. Pascual, I. D., Santana, W. and Silveira, M. A., 2017. Potential for sweet potato (Ipomoea batatas (L.) Lam.) single crosses to improve ethanol production. Revista Chapingo Serie Horticultura 23, pp. 59-74. http://doi.org/10.5154/r.rchsh.2016.05.013

Triwahyuni, E., 2020. Valorization of oil palm empty fruit bunch for bioethanol production through separate hydrolysis and fermentation (SHF) using immobilized cellulolytic enzymes. IOP Conf. Ser. Earth Environ. Science, 439, pp. 12–18. http://doi.org/10.1088/1755-1315/439/1/012018

Weber, C. T., Ranzan, L., Liesegang, L. M., Trierweiler, L. F. and Trierweiler, J. O., 2020. A circular economy model for ethanol and alcohol-based hand sanitizer from sweet potato waste in the context of COVID-19. Brazil Journal Operations & Production Management, 17, pp. 1–12. http://doi.org/10.14488/bjopm.2020.028

Zaccari, F., Cabrera, M.C. and Saadoun, A., 2019. Sweet Potato and Squash Storage. Encyclopedia of Food Security and Sustainability 2, pp. 464-472. http://doi.org/10.1016/B978-0-08-100596-5.22429-3

Zapana, J., M. Mamani, F. Escobar, and L. Zapana., 2018. Producción de raíz tuberosa en cultivo de "mauka" (Mirabilis expansa [Ruiz y Pavón] Standley) con aplicación de abonamiento orgánico y fertilización química en Puno - Perú. Revista de Investigaciones Altoandinas, 19, pp. 275-284. http://doi.org/10.18271/ria.2017.292

Zhang, L., Zhao, L., Bian, X., Guo, K. Zhou, L. and Wei, C., 2018. Characterization and comparative study of starches from seven purple sweet potatoes. Food Hydrocolloids, 80, pp. 168-176. http://doi.org/10.1016/j.foodhyd.2018.02.006

Zhu, F., Yang, X., Cai, Y., Bertoft, E. and Corke, H., 2011. Physicochemical properties of sweetpotato starch. Starch - Stärke, 63, pp. 249-259. http://doi.org/10.1002/star.201000134

Zhu, F. and Xie, Q., 2018. Rheological and thermal properties in relation to molecular structure of New Zealand sweetpotato starch. Food Hydrocoll, 83, pp. 165–172. http://doi.org/10.1016/j.foodhyd.2018.05.004




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.44095

DOI: http://dx.doi.org/10.56369/tsaes.4409



Copyright (c) 2022 Roberto Hugo Tirado Malaver

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.