Stover as a core element of forage resilience: Synthetic indices and livestock productivity in Frailesca, Chiapas, Mexico

Ernesto Javier Gómez-Padilla, Francisco Guevara-Hernandez, Manuel Alejandro La O-Arias, José Roberto Aguilar-Jiménez, René Pinto-Ruiz, Ingrid Abril Valdivieso_Pérez

Abstract


Background. Corn stover functions as a temporary agroecosystem in the Frailesca region of Chiapas and represents a strategic resource to sustain livestock during prolonged dry periods. Objective. To characterize the forage resilience of the stover-based temporary agroecosystem in Frailesca, Chiapas, through the construction and application of synthetic indices, and to analyze its relationship with livestock productivity in order to identify the factors that determine its functional stability and guide its sustainable management. Methodology. Sixty agricultural, livestock, and mixed production units were evaluated in the municipalities of Villaflores, Villa Corzo, and La Concordia through semi-structured interviews and production records that integrated 84 variables from both the crop and livestock subsystems. Three synthetic indices were constructed: the Forage Resilience Index (FRI), which expresses the effective availability of biomass; the Adjusted Forage Resilience Index (FRIadj), which incorporates off-farm access and stocking rate; and the Seasonal Resilience Index (SRI), which reflects the temporal orientation of the resource. Data were analyzed using descriptive statistics, correlation analyses, and generalized linear regression models (GLM Gamma-log). Results. Bale storage and access to external stover areas were the main determinants of resilience, whereas animal density and days of stover availability during the dry season were not significant. Increases in FRIadj were associated with higher meat and milk yields, which confirms this index as an operational indicator of resilience. Implications. Livestock resilience in the Frailesca region depends less on the total amount of stover and more on its management through storage and territorial exchange networks. The FRIadj provides a practical tool for evaluating forage stability and anticipating meat and milk productivity, offering theoretical, methodological, and applied bases to strengthen the sustainability of tropical agroecosystems. Conclusions. Forage resilience in the Frailesca region relies primarily on bale storage and access to external stover sources, rather than on traditional variables such as animal density or gross availability. These results highlight that livestock stability during the dry season depends on active resource management and on the territorial organization of producers.

Keywords


Tropical agroecosystems; forage resilience; maize stover; livestock productivity; synthetic indices.

Full Text:

PDF

References


Altieri, M.A. and Nicholls, C.I., 2017. The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change, 140(1), pp. 33–45. https://doi.org/10.1007/s10584-013-0909-y

Arellano-Vicente, I., Pinto-Ruíz, R., Guevara-Hernández, F., Reyes-Muro, L., Hernández-Sánchez, D. and Ley-de Coss, A., 2016. Caracterización del uso directo del rastrojo de maíz (Zea mays L.) por bovinos. Revista Mexicana de Ciencias Agrícolas, 7(5), pp. 1117–1129. https://www.scielo.org.mx/scielo.php?pid=S2007-09342016000501117&script=sci_abstract&tlng=pt

Borja-Bravo, M., Reyes-Muro, L., Espinosa-García, J.A. and Vélez-Izquierdo, A., 2013. Producción y consumo de rastrojos en México. In: Reyes-Muro, L., Camacho-Villa, T.C. and Guevara-Hernández, F. (eds.) Rastrojos: manejo, uso y mercado en el centro y sur de México. 1st ed. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), pp. 12–35.

Cabell, J.F. and Oelofse, M., 2012. An indicator framework for assessing agroecosystem resilience. Ecology and Society, 17(1), p. 18. https://doi.org/10.5751/ES-04666-170118

Cleves, A., Youkhana, E. and Toro, J., 2022. A method to assess agroecosystem resilience to climate variability. Sustainability, 14(14), pp. 85-88. https://doi.org/10.3390/su14148588

Cleves-Leguízamo, J.A., Youkhana, E. and Toro-Calderon, J., 2020. Agroecosystemic Resilience Index (AgRI): A method to assess agrobiodiversity. bioRxiv. https://doi.org/10.1101/2020.12.03.409656

Comisión Nacional del Agua (CONAGUA), 2024. Resúmenes mensuales de temperaturas y lluvia. Gobierno de México. https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias

Desta, A.G., 2023. Nutritional content analysis of crop residues in three agroecologies in East Gojjam Zone. The Scientific World Journal, 2023, pp. 1–8. https://doi.org/10.1155/2023/1974081

Gómez-Padilla, E.J, Guevara-Hernández, F., La O-Arias, M.A., Valdivieso-Pérez, I.A., Pinto-Ruiz, R, and Villareal-Fuentes, J.M. 2025a. Caracterización tipológica y temporalidad del agroecosistema rastrojo en Chiapas, México. Agronomía Mesoamericana. 36, p. 418thz31. https://doi.org/10.15517/418thz31

Gómez-Padilla, E.J., Guevara-Hernández, F. and La O-Arias, M.A., 2025b. De prácticas aisladas a la perspectiva agroecosistémica: la transformación conceptual del rastrojo de maíz en la región Frailesca, Chiapas. Revista Chapingo Serie Agricultura Tropical, 5, pp. 1–15. https://doi.org/10.5154/r.rchsat.2024.05.04

Guerrero-Rodríguez, J.D.D., Muñoz-Tlahuiz, F., López, P.A., López-Sánchez, H., Hernández-Guzmán, J.A. and Gil-Muñoz, A., 2023. Digestibilidad del rastrojo de variedades locales de maíz en el altiplano Poblano-Tlaxcalteca. Revista Mexicana de Ciencias Agrícolas, 29, pp. 1–13. https://doi.org/10.29312/remexca.v14i29.3527

Guevara-Hernández, F., Rodríguez Larramendi, L.A., Ocaña Grajales, M.J., Cruz, J.O., Pinto Ruiz, R., La O Arias, M.A., Gómez Castro, H. and Ortiz Pérez, R., 2014. El rastrojo de maíz en la relación maíz–ganadería bovina del trópico seco de Chiapas, México. Archivos Latinoamericanos de Producción Animal, 22(1–2), pp. 37–42. https://dialnet.unirioja.es/servlet/articulo?codigo=5069408

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Cohlke, C. and Oliphant, T.E., 2020. Array programming with NumPy. Nature, 585(7825), pp. 357–362. https://doi.org/10.1038/s41586-020-2649-2

Holling, C.S., 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), pp. 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Computing in Science and Engineering, 9(3), pp. 90–95. https://doi.org/10.1109/MCSE.2007.55

Instituto Nacional de Estadística y Geografía (INEGI), 2024. Geografía y medio ambiente. Mapas climatológicos. https://n9.cl/pfc87

MacKinnon, J.G. and White, H., 1985. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29(3), pp. 305–325. https://doi.org/10.1016/0304-4076(85)90158-7

McKinney, W., 2010. Data structures for statistical computing in Python. In: Proceedings of the 9th Python in Science Conference, pp. 56–61. https://doi.org/10.25080/Majora-92bf1922-00a

Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffmann, A. and Giovannini, E., 2005. Handbook on constructing composite indicators: Methodology and user guide. OECD. https://doi.org/10.1787/533411815016

Nave, R.L.G., 2025. Sustainable forage production in crop–livestock systems. Agronomy, 15(3), p. 657. https://doi.org/10.3390/agronomy15030657

Ortega, G., Berberian, N. and Chilibroste, P., 2024. The effects of stocking rate, residual sward height, and forage supplementation on forage production, feeding strategies, and productivity of milking dairy cows. Frontiers in Animal Science, 5, p. 1319150. https://doi.org/10.3389/fanim.2024.1319150

Seabold, S. and Perktold, J., 2010. Statsmodels: Econometric and statistical modeling with Python. In: Proceedings of the 9th Python in Science Conference, pp. 92–96. https://conference.scipy.org/proceedings/scipy2010/seabold.html

Servicio de Información Agroalimentaria y Pesquera (SIAP), 2024. Panorama agroalimentario: La ruta de la transformación agroalimentaria 2018–2024. Secretaría de Agricultura y Desarrollo Rural. https://www.gob.mx/siap/acciones-y-programas/panorama-agroalimentario-258035

Servicio de Información Agroalimentaria y Pesquera (SIAP), 2025. Producción agrícola municipal: Maíz grano en Villaflores, Villa Corzo y La Concordia, Chiapas. Cierre agrícola año agrícola (OI+PV), 2024. Secretaría de Agricultura y Desarrollo Rural. https://nube.agricultura.gob.mx/cierre_agricola/

Severino da Silva, L., 2025. Enhancing climate resilience of forage ecosystems through sustainable intensification and educational knowledge transfer in the southeastern USA. Crops, 5(4), p. 42. https://doi.org/10.3390/crops5040042

Shah, A.M., Zhang, H., Shahid, M., Ghazal, H., Shah, A.R., Niaz, M., Naz, T., Ghimire, K., Goswami, N., Shi, W., Xia, D. and Zhao, H., 2025. The vital roles of agricultural crop residues and agro-industrial by-products to support sustainable livestock productivity in subtropical regions. Animals, 15(8), p. 1184. https://doi.org/10.3390/ani15081184

Sietz, D., Frey, U., Roggero, M., Gong, Y., Magliocca, N., Tan, R., Janssen, P. and Václavík, T., 2019. Archetype analysis in sustainability research: Methodological portfolio and analytical frontiers. Ecology and Society, 24(3), p. 34. https://doi.org/10.5751/ES-11103-240334

StatSoft Inc., 2014. STATISTICA (Data Analysis Software System), Version 10. [online] https://www.statistica.com [Accessed 16 November 2024].

Tozer, K., Douglas, G., Dodd, M. and Müller, K., 2021. Vegetation options for increasing resilience in pastoral hill country. Frontiers in Sustainable Food Systems, 5, p. 550334. https://doi.org/10.3389/fsufs.2021.550334

von Bertalanffy, L., 1968. General system theory: Foundations, development, applications. George Braziller. https://monoskop.org/File%3AVon_Bertalanffy_Ludwig_General_System_Theory_1968.pdf

von Bertalanffy, L., 1975. Perspectives on General System Theory: Scientific-philosophical Studies. George Braziller. https://archive.org/details/perspectivesonge00bert




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.64850

DOI: http://dx.doi.org/10.56369/tsaes.6485



Copyright (c) 2025 Manuel Alejandro La O-Arias, Francisco Guevara-Hernandez, Ernesto Javier Gómez-Padilla, José Roberto Aguilar-Jiménez, René Pinto-Ruiz, Ingrid Abril Valdivieso_Pérez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.