Impact of chitosan-potassium iodate nanocomposite on the growth of zucchini seedlings and fungistatic effect on Podosphaera xanthii

Nazario Francisco-Francisco, Jorge Francisco León De la Rocha, Hortensia Ortega ORtiz

Abstract


Background: Chitosan nanoparticles (NPsCS) and potassium iodate (KIO3) currently show biostimulation and bioprotection benefits in agricultural crops; however, there are few plant species and pathogens in which chitosan-iodate nanocomposite (NPsCS-KIO3) have been evaluated. Objective: To evaluate low concentrations of NPsCS-KIO3 dispersions in the growth of zucchini (Cucurbita pepo L.) seedlings and the control of powdery mildew (Podosphaera xanthii). Methodology: Applications of serial dilutions of 10-1, 10-2, and 10-3 of the NPs-KIO3, NPsCS, and KIO3 treatments were carried out on the cotyledons of the seedlings under a completely randomized design. The results were processed with ANOVA and means tests were performed (Tukey, p = 0.05). Results: It was found that treatment with NPsCS-KIO3 at 10-1 (2.5 mg L-1) was the most effective in reducing the area under the disease progress curve (AUDPC) and stimulated the formation of leaves with a statistical difference from day 34 after its application. Implications: The results of this work contribute to the evidence of the biostimulant effect of NPsCS-KIO3 in the foliar development of zucchini plants and in vivo fungistatic effect at low concentrations.  Conclusion: The application of nanocomposite NPsCS-KIO3 at a concentration of 2.5 mg L-1 stimulates zucchini plant growth and promotes a fungistatic in vivo effect on P. xanthii compared to individual applications of NPsCS and KIO3.

Keywords


Disease severity; conidial germination; root weight.

Full Text:

PDF

References


Bojórquez, R.C., León, F.L., Allende, M.R., Muy, R.M.D., Carrillo, F.J.A. and Valdez, T.J.B., 2012. Characterization of powdery mildew in cucumber plants under greenhouse conditions in the Culiacan Valley, Sinaloa, Mexico. African Journal of Agricultural Research, 7(21, pp. 3237-3248. https://doi.org/10.5897/AJAR11.2093

Campbell, C.L. and Madden, L.V., 1990. Introduction to Plant Disease Epidemiology. Editorial John Whiley & Son, New York, USA, p. 560.

Chavali, M.S. and Nikolova, M.P., 2019. Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences, 1(6), p. 607. https://doi.org/10.1007/S42452-019-0592-3

De La Rocha, J.F.L., Bojórquez-Ramos, C., Francisco-Francisco, N., Olivar-Hernández, A., López-España, R.G., Reyes-Duque, Y. and Pérez-Olvera, P., 2020. Identificación del agente causal del mildiu polvoriento en plantas de calabaza (Cucurbita pepo L.) en Tehuacán, México. Revista de Protección Vegetal, 35(2), pp. 1-9.

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N. and Mnif, W. 2016. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 3(4), p. 25. https://doi.org/10.3390/medicines3040025

Elmowafy, M., Shalaby, K., Elkomy, M.H., Alsaidan, O.A., Gomaa, H.A.M., Abdelgawad, M.A. and Mostafa, E.M., 2023. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers, 15(5), p. 1123. https://doi.org/10.3390/POLYM15051123

Fernández-Ortuño, D., Pérez-García, A., López-Ruiz, F., Romero, D., De Vicente, A. and Torés, J. A. 2006. Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south central Spain. European Journal of Plant Pathology, 115, pp. 215-222. https://doi.org/10.1007/s10658-006-9014-7

El-Saadony, M.T., Saad, A.M., Soliman, S.M., Salem, H.M., Desoky, E.S.M., Babalghith, A.O., El-Tahan, A.M., Ibrahim, O.M., Ebrahim, A.A.M., Abd El-Mageed, T.A., Elrys, A.S., Elbadawi, A.A., El-Tarabily, K.A. and AbuQamar, S.F., 2022. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Frontiers in Plant Science, 13, p. 946717. https://doi.org/10.3389/FPLS.2022.946717/PDF

Gastélum, R.F., Apodaca, S.M.A., Martínez, V.M.C. and Espinosa, M.S., 2005. Podosphaera (Sect. Sphaerotheca) xanthii (Castagne). Brawn, U. y Shishkoff, N. en cucurbitáceas en el norte de Sinaloa, México. Revista Mexicana de Fitopatología, 23, pp. 162-168.

González-García, Y., Cadenas-Pliego, G., Benavides-Mendoza, A. and Juárez-Maldonado, A., 2022. Impact of chitosan and chitosan based nanoparticles on plants growth and development. Role of Chitosan and Chitosan-Based Nanomaterials in Plant Sciences, pp. 255-271. https://doi.org/10.1016/B978-0-323-85391-0.00002-2

González-Morales, S., Cárdenas-Atayde, P.A., Garza-Alonso, C.A., Robledo-Olivo, A. and Benavides-Mendoza, A., 2022. Plant Biostimulation with Nanomaterials: A Physiological and Molecular Standpoint. Inorganic Nanopesticides and Nanofertilizers: A View from the Mechanisms of Action to Field Applications, pp. 153-185. https://doi.org/10.1007/978-3-030-94155-0_5

Gupta, N., Shukla Bajpai, M., Majumdar, R.S. and Singh, D., 2016. Effect of exogenous iodine on enhancement of oxidative stress in soybean (Glycine max) plant and partial expression of 1-Cys peroxiredoxin gene under heat-stress conditions. Indian Journal of Agricultural Sciences, 86(5), pp. 686-690. https://doi.org/10.56093/ijas.v86i5.58356

Hatch-McChesney, A. and Lieberman, H.R., 2022. Iodine and Iodine Deficiency: A Comprehensive Review of a Re-Emerging Issue. Nutrients 2022, 14(17), p. 3474. https://doi.org/10.3390/NU14173474

Horsfall, J.G. and Barrat, R.W., 1945. An improved grading system for measuring plant disease. Phytopathology, p. 655.

Jiang, Q., Xie, Y., Peng, M., Wang, Z., Li, T., Yin, M., Shen, J. and Yan, S., 2022. A nanocarrier pesticide delivery system with promising benefits in the case of dinotefuran: strikingly enhanced bioactivity and reduced pesticide residue. Environmental Science: Nano, 9(3), pp. 988-999. https://doi.org/10.1039/D1EN00752A

Khan, I., Saeed, K. and Khan, I., 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), pp. 908-931. https://doi.org/10.1016/J.ARABJC.2017.05.011

Kheiri, A., Moosawi Jorf, S.A., Mallihipour, A., Saremi, H. and Nikkhah, M., 2016. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. International Journal of Biological Macromolecules, 93, pp. 1261-1272. https://doi.org/10.1016/J.IJBIOMAC.2016.09.072

Kiferle, C., Ascrizzi, R., Martinelli, M., Gonzali, S., Mariotti, L., Pistelli, L., Flamini, G. and Perata, P., 2019. Effect of Iodine treatments on Ocimum basilicum L.: Biofortification, phenolics production and essential oil composition. PLOS ONE, 14(12), pp. 1-23. https://doi.org/10.1371/JOURNAL.PONE.0226559

Iavicoli, I., Leso, V., Fontana, L. and Calabrese, E.J., 2018. Nanoparticle exposure and hormetic dose–responses: An update. International Journal of Molecular Sciences, 19(3), p. 805. https://doi.org/10.3390/ijms19030805

Maluin, F.N., Hussein, M.Z., Yusof, N.A., Fakurazi, S., Idris, A.S., Zainol Hilmi, N.H. and Daim, L.D.J., 2020. Phytotoxicity of chitosan-based agronanofungicides in the vegetative growth of oil palm seedling. Plos One, 15(4), pp. e0231315-e0231315. https://doi.org/10.1371/JOURNAL.PONE.0231315

McGrath, M.T. (2001). Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Disease, 85(3), pp. 236-245. https://doi.org/10.1094/PDIS.2001.85.3.236

Medrano-Macías, J., Leija-Martínez, P., Juárez-Maldonado, A., Rocha-Estrada, A. and Benavides-Mendoza, A., 2016. Efecto de la aplicación de yodo sobre antioxidantes en plántulas de jitomate. Revista Chapingo. Serie Horticultura, 22(2), pp. 133-143. https://doi.org/10.5154/R.RCHSH.2015.12.025

Mourad, B., Baha-Eddine, B. and Mokhtar, B., 2017. The Impact of a Hexaconazole Fungicide on Agronomic, Biochemical Parameters and Yield Components of Green Beans Phaseolus vulgaris cv. Djedida. International Journal of Advanced Engineering and Management, 2(6), pp. 146-152. https://doi.org/10.24999/IJOAEM/02060035

Niculescu, A.G. and Grumezescu, A.M., 2022. Applications of Chitosan-Alginate-Based Nanoparticles—An Up-to-Date Review. Nanomaterials 2022, 12(2), p. 186. https://doi.org/10.3390/NANO12020186

Ortega Ortiz, H., Alvarado-Tenorio, G., Comparán-Padilla, V.E. and Ramírez-Rodríguez, S.C., 2016. Obtención de complejos yodados a partir de nanopartículas de quitosán y sales de yodo. Instituto Mexicano de la Propiedad Industrial (IMPI), México. Registro IMPI: MX/a/2022/015150. Disponible en: https://vidoc.impi.gob.mx/visor?usr=SIGA&texp=SI&tdoc=E&id=MX/a/2022/015150

Ramírez-Rodríguez, S.C., Preciado-Rangel, P., Fuente, M.C.D. La, González-Morales, S. and Ortega-Ortiz, H., 2024. Chitosan Nanoparticles as Biostimulant in Lettuce (Lactuca sativa L.) Plants. Phyton-International Journal of Experimental Botany, 93(4), p. 777. https://doi.org/10.32604/PHYTON.2024.048096

Rivera Solís, L.L., Ortega Ortíz, H., Benavides Mendoza, A., Flores López, M.L., Robledo Olivo, A. and González Morales, S., 2024. Efecto bioestimulante de nanoquitosán-yodo en el crecimiento y vigor de plantas de tomate. Ecosistemas y Recursos Agropecuarios, 11(2), p. 19. https://doi.org/10.19136/era.a11n2.3623

Singh, R.P., Handa, R. and Manchanda, G., 2021. Nanoparticles in sustainable agriculture: An emerging opportunity. Journal of Controlled Release, 329, pp. 1234-1248. https://doi.org/10.1016/J.JCONREL.2020.10.051

Treviño-Ruiz, K.S., Ortega-Ortiz, H., Benavides-Mendoza, A. and González-Morales, S., 2024. Effect of nanochitosan-iodine application in lettuce on biofortification, growth and yield. Ecosistemas y Recursos Agropecuarios, 11(2), p. e3615 https://doi.org/10.19136/ERA.A11N2.3615

Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., Rehman, H.ur, Ashraf, I. and Sanaullah, M., 2020. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment, 721, p. 137778. https://doi.org/10.1016/J.SCITOTENV.2020.137778

Zhang, S., Liu, J., Xu, B. and Zhou, J., 2021. Differential Responses of Cucurbita pepo to Podosphaera xanthii Reveal the Mechanism of Powdery Mildew Disease Resistance in Pumpkin. Frontiers in Plant Science, 12, p. 633221. https://doi.org/10.3389/FPLS.2021.633221




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.62852

DOI: http://dx.doi.org/10.56369/tsaes.6285



Copyright (c) 2025 Nazario Francisco-Francisco, Jorge Francisco León De la Rocha, Hortensia Ortega ORtiz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.