Bioferments in the morphological and quality of cocoa (Theobroma cacao L.) seedlings in the nursery

Percy Díaz-Chuquizuta, Henry Díaz-Chuquizuta, Yuri Gandhi Arevalo-Aranda, Juan Pablo Cuevas-Giménez

Abstract


Background. The morphological quality of cocoa (Theobroma cacao L.) seedlings in the nursery is essential for the success of commercial plantations. Bioferments represent a sustainable alternative to improve the morphology and quality of seedlings. Objective. To evaluate the effect of bioferments on the morphology and quality of cocoa seedlings in the nursery. Methodology. Four treatments were used with different combinations of substrates and solid and liquid bioferments. A completely randomized design with four repetitions was used, measuring morphological and quality variables. Results. The traditional substrate treatment with the addition of solid and liquid bioferments (ST+BS+BL) showed the highest values in height, stem diameter, dry biomass and Dickson quality, surpassing the traditional substrate by 51%. Implications. Bioferments improve the availability of nutrients and the structure of the substrate, favoring the development of vigorous and better quality seedlings. Conclusions. The combination of solid and liquid bioferments represents an agroecological strategy to optimize the morphological attributes and quality of cocoa seedlings in the nursery.

Keywords


anaerobic fermentation; biodigester; substrat; morphological quality; biomass; quality index.

Full Text:

PDF

References


Alarcón, J., Recharte, D., Yanqui, F., Moreno, S. and Buendía, M., 2020. Fertilizing with native efficient microorganisms has a positive effect on the phenology, biomass and production of tomato (Lycopersicum esculentum Mill). Scientia Agropecuaria, 11(1), pp.67–73. https://doi.org/10.17268/sci.agropecu.2020.01.08

Andrade, M.D.C.N., Hernandez, F.D., Laredo, E.I., Ledezma, A.S., Alvarado, C.N. and Romero, J., 2020. Efecto biológico de nanopartículas cargadas con ácido indolacético microbiano en parámetros morfométricos de tomate. Revista Mexicana de Ciencias Agrícolas, 11(3), pp.507–517. https://doi.org/10.29312/remexca.v11i3.1919

Aracelly-López, I.D., Plaza-Avellán, I.L.F., Rivadeneira-Moreira, I.B.J., María, I.F. and Herrera-Suárez, D.C.M., 2020. Comparison of three variants of substrate preparation used in the propagation of cocoa standards. Ciencias Técnicas Agropecuarias, 29(3), pp.37–49

Boakye, R.G., Stanley, D.A. and White, B., 2023. Honey contamination from plant protection products approved for cocoa (Theobroma cacao) cultivation: A systematic review of existing research and methods. PLOS One, 18(10), p.e0280175. https://doi.org/10.1371/journal.pone.0280175

Cargua, J.E., Luna, A.K., González, H., Cedeño, G.A. and Cedeño, Á.F., 2022. Growth and quality of arabica coffee plants with the application of biochar and biofertilizers in the nursery. Chilean Journal of Agricultural & Animal Sciences, 38(1), pp.3–14. https://doi.org/10.29393/CHJAAS38-1CCJA50001

Corrales-Lozada, Marbil, Lumbres, Victoria, Iglesias-Osores, Sebastian, and Carreño-Farfán, Carmen. 2020. Potencialidades de bacterias promotoras del crecimiento vegetal, aisladas de Portulaca oleracea L. en suelos con salinidad. Pastos y Forrajes, 43(2), 93-101. Recuperado en 11 de febrero de 2025, de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942020000200093&lng=es&tlng=es

Cortés-Patiño, S.L., Vesga-Ayala, N.P., Sigarroa-Rieche, A.K., Moreno-Rozo, L. and Cárdenas-Caro, D., 2015. Susutratos inoculados con microorganismos para el desarrollo de plantas de cacao (Theobroma cacao L.) en etapa de vivero. Bioagro, 27(3), pp.151–158. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612015000300003

De Mendiburu, F., 2023. agricolae: Statistical procedures for agricultural research. https://doi.org/10.32614/CRAN.package.agricolae

Díaz-Chuquizuta, H., Díaz-Chuquizuta, P. and Arevalo-Aranda, Y.G., 2024. Response of corn to the application of microbial consortium and its combination with biol, under dry tropic conditions. Tropical and Subtropical Agroecosystems, 27(2), pp.070. https://doi.org/10.56369/tsaes.5246

Díaz-Chuquizuta, P. and Valdés-Rodríguez, O.A., 2020. Growth of mahogany seedlings (Swietenia macrophylla King) in response to vegetable extracts. Agrociencia, 54(5), pp.673–681. https://doi.org/10.47163/agrociencia.v54i5.2124

Garay-Peralta, I., Villarruel-Fuentes, M., Luna-Díaz Peón, A., Chávez-Morales, R. and Herrera-Alarcón, J., 2024. Climatic factors in the development and production of cocoa in Ursulo Galvan, Veracruz, Mexico. Agronomía Mesoamericana, 35, p.54337. https://doi.org/10.15517/am.2024.54337

Gómez, A and Ormeño, M. 2013. Selección de semilla y establecimiento de vivero para cacao. Maracay, Venezuela: Instituto Nacional de Investigaciones Agrícolas. http://sian.inia.gob.ve/pdfpnp/Seleccion%20semillas%20de%20Cacao.pdf

González-León, Y., Ortega-Bernal, J., Anducho-Reyes, M.A. and Mercado-Flores, Y., 2022. Bacillus subtilis y Trichoderma: Características generales y su aplicación en la agricultura. TIP Revista Especializada en Ciencias Químico-Biológicas, [online] 25. https://doi.org/10.22201/fesz.23958723e.2022.520

Huamán, O.G., 2024. Observatorio de COMMODITIES Cacao - MIDAGRI. 1st ed. [online] Lima, Perú: Dirección de Estudios Económicos MIDAGRI. Available at: https://cdn.www.gob.pe/uploads/document/file/6334592/5316298-commodities-cacao-n-01-2024.pdf?v=1715610268 [Accessed 4 December 2024]

Huasasquiche, L., Moreno, P. and Jiménez, J., 2020. Chracterization and evaluation of PGPR potential of the microflora associated with tarwi (Lupinus mutabilis Sweet). Ecología Aplicada, 19(2), p.65. https://doi.org/10.21704/rea.v19i2.1557

Imán, S. A. 2019. Manual de manejo agronómico del cultivo de cacao nativo (Theobroma cacao L.) en la región Loreto. 1st ed. [online] Loreto, Perú: Instituto Nacional de Innovación Agraria-INIA https://repositorio.inia.gob.pe/handle/20.500.12955/1065

Ishida, A., Ogiwara, I. and Suzuki, S., 2023. Elevated CO2 Influences the growth, root morphology, and leaf photosynthesis of cacao (Theobroma cacao L.) Seedlings. Agronomy, 13(9), p.2264. https://doi.org/10.3390/agronomy13092264

Jayaprakash, G., Bains, A., Chawla, P., Fogarasi, M. and Fogarasi, S., 2022. A narrative review on rice proteins: current scenario and food industrial application. Polymers, 14(15), p.3003. https://doi.org/10.3390/polym14153003

Kamjijam, B., Bednarz, H., Suwannaporn, P., Jom, K.N. and Niehaus, K., 2020. Localization of amino acids in germinated rice grain: Gamma-aminobutyric acid and essential amino acids production approach. Journal of Cereal Science, 93, p.102958. https://doi.org/10.1016/j.jcs.2020.102958

Licea-Herrera, J.I., Quiroz-Velásquez, J.D.C. and Hernández-Mendoza, J.L., 2020. Impact of Azospirillum brasilense, a Rhizobacterium stimulating the production of Indole-3-Acetic Acid as the mechanism of improving plants’ grow in agricultural crops. Revista Boliviana de Química, 37(1), pp.34–39. https://doi.org/10.34098/2078-3949.37.1.5

Long, H. and Wasaki, J., 2023. Effects of phosphate-solubilizing bacteria on soil phosphorus fractions and supply to maize seedlings grown in lateritic red earths and cinnamon soils. Microbes and Environments, 38(2), p.ME22075. https://doi.org/10.1264/jsme2.ME22075

Mohamed, R., Zainudin, B.H. and Yaakob, A.S., 2020. Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry. Food Chemistry, 303, p.125392. https://doi.org/10.1016/j.foodchem.2019.125392

Mollericona, M.D. and Calle, E.E., 2021. Morphometric evaluation of cocoa (Theobroma cacao L.) and avocado (Persiana americana Mill) seedlings in nursery stage, Sapecho Experimental Station. Apthapi, 7(3), pp.2229–2235

Mollericona, M.D., Laime, E.E. and Merma, E.A., 2022. Non-destructive estimation of the foliar area in cacao (Theobroma cacao L.) plantules from linear leaf measurements, Sapecho Experimental Station. Apthapi, 8(1), pp.2310–2319

Muñoz, H.J., Sáenz, J.T., Coria, V.M., García, J. de J., Hernández, J. and Manzanilla, G.E., 2015. Calidad de planta en el vivero foestal La Dieta, Municipio Zitácuro, Michoacán. Revista Mexicana de Ciencias Forestales, 6(7), pp.72–89. https://doi.org/10.29298/rmcf.v6i27.282

Pérez-Díaz, A., Aranda-Azaharez, R., Rivera-Espinosa, R.A., Bustamante-González, C.A. and Pérez-Suarez, Y., 2023. Quality indicators for micrografted seedlings of Theobroma cacao inoculated with arbuscular mycorrhizal fungi. Agronomía Mesoamericana, 34(2), p.51102. https://doi.org/10.15517/am.v34i2.51102

Rahayu, Y.S. and Al-Naja, H., 2024. Role of mycorrhizal fungi and phosphate-solubilizing bacteria in plant uptake of essential and metal elements in heavy metal-contaminated soil. Chapingo Serie Horticultura, 30(2), pp.27–42. https://doi.org/10.5154/r.rchsh.2024.02.001

Restrepo, J. and Agredo, D. 2020. Reproducción masiva de microrganismos del bosque. In Mierda a la carta. Un nuevo ABC de la agricultura orgánica. Cali, Colombia. Imagines graficas BIC. S.A.S. pp 121-169

Rivera-Cruz, M.D.C., González-Mancilla, A., Almaraz-Suárez, J.J., Ortiz-García, C.F., Trujillo Narcía, A., Vázquez-López, P. and Cruz-Navarro, G., 2020. Crecimiento de Citrange troyer y atributos químicos-microbiológicos del suelo en respuesta a diferentes fertilizantes orgánicos. Terra Latinoamericana, 38(3), pp.519–528. https://doi.org/10.28940/terra.v38i3.602

Rodríguez-Arrobo, T., Cajamarca-Crespo, K., Barrezueta-Unda, S., Luna-Romero, A. and Villaseñor-Ortiz, D., 2023. Efectos de bioestimulantes en el crecimiento morfológico de plántulas de cacao en etapa de vivero. Manglar, 20(2), pp. 117-122. https://doi.org/10.57188/manglar.2023.013

Rojas-Badía, M.M., Bello-González, M.A., Ríos-Rocafull, Y., Lugo-Moya, D. and Rodríguez Sánchez, J., 2020. Plant growth promotion of commercial vegetable crops by Bacillus strains. Acta Agronómica, 69(1), pp.54–60. https://doi.org/10.15446/acag.v69n1.79606

Ruelas-Islas, J.D.R., Romero-Félix, C.S., Mendoza-Pérez, C., Núñez-Ramírez, F., Rocha Santillano, J.J. and Ayala-Armenta, Q.A., 2022. Fósforo y Bacillus subtilis en absorción y remoción de micronutrientes en Phaseolus vulgaris L. Revista Mexicana de Ciencias Agrícolas, (28), pp.243–252. https://doi.org/10.29312/remexca.v13i28.3279

Sales-Ordoñez, G., Aguirre-Escalante, C., Cerna-Cueva, A.F., Ortega-Silva, D.S., Pérez-Hernández, V.E., Aguilar-Carazas, N.W. and Reategui-Inga, M.E., 2024. Análisis de microorganismos funcionales y su relación con parámetros fisicoquímicos del suelo en un bosque reservado. Manglar, 21(1), pp.19–28. https://doi.org/10.57188/manglar.2024.002

Sánchez, R. and Guerra, P., 2022. Pseudomonas spp. benéficas en la agricultura. Revista Mexicana de Ciencias Agrícolas, 13(4), pp.715-725. https://doi.org/10.29312/remexca.v13i4.2799

Sotomayor, A., Mejía, P., Morocho, D., Gaona, P., Viteri, P., Medina, L. and Viera, W., 2022. Microbial consortiums applied in seedling production system of avocado cultivar ‘Criollo’. Manglar, 19(1), pp.15–23. https://doi.org/10.17268/manglar.2022.002

Tanya, M. and Leiva-Mora, M., 2019. Efficient microorganisms, functional properties and agricultural applications. Centro Agricola, 46(2), pp.93–103

Velasco-Jiménez, A., Castellanos-Hernández, O., Acevedo-Hernández, G., Aarland, R.C. and Rodríguez-Sahagún, A., 2020. Rhizospheric bacteria with potential benefits in agriculture. Terra Latinoamericana, 38(2), pp.333–345. https://doi.org/10.28940/terra.v38i2.470




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.62711

DOI: http://dx.doi.org/10.56369/tsaes.6271



Copyright (c) 2025 PERCY DIAZ CHUQUIZUTA, Henry Diaz-Chuquizuta, Yuri Gandhi Arevalo-Aranda, Juan Pablo Cuevas-Giménez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.