Physicochemical characterization and metal content in water and sediments of affluents to a reservoir in the southeast Peruvian Andes

Jorge Garate-Quispe, Roger Gonzales-Aliaga, Vladimiro Ibañez-Quispe

Abstract


Background: Water is an essential natural resource for the survival of living organisms on Earth. However, recently, both anthropogenic and natural activities have contaminated water bodies in the Andes with metals and other pollutants. Objective: To characterize the water physicochemical and to determine the concentration of metals in water and sediments, as well as the relationship between them, in the tributaries of a reservoir in the southeastern Peruvian Andes. Methodology: We selected 19 sampling points (affluents). Two types of samples were taken at each sampling point: (1) water samples were taken for physicochemical analysis and to find out the concentration of 15 metals; and (2) sediment samples were taken to find out the concentration of 16 metals. We used Spearman's correlation coefficient to analyze the relationship between water physicochemical properties and metal concentrations in water and sediments. Results: For most of the metals (As, Ba, Be, Cd, Cu, Fe, Mn, Pb, Sb and Zn) analyzed in water, concentrations higher than the Peruvian environmental quality standards (EQS) were found. The pH was inversely related to aluminium, beryllium, chromium, copper, iron, manganese, nickel and zinc. Conductivity was directly related to aluminium, beryllium, copper, nickel, lead, uranium and zinc. On the other hand, only positive and significant correlations were found between the concentrations of arsenic, boron, cadmium, lead and antimony found in water and sediments. Implications: It is important to adequately assess, manage, and monitor water resources to ensure their quality for human consumption. This is because we found that the physicochemical characteristics and metal concentrations in water exceed EQS and may represent a risk to human health. Conclusion: The study demonstrates the existence of acid rock drainage in the studied affluents. In most of the tributaries, pH, dissolved oxygen, and most of the metals in the water exceeded the EQS. In addition, an interaction process was evidenced between the concentration of metals in water and sediments.

Keywords


Heavy metals; Quality standards; Puno; hydrothermal alteration; principal components analysis; Spearman's correlation.

Full Text:

PDF

References


Ali, M.M., Rahman, S., Islam, M.S., Rakib, M.R.J., Hossen, S., Rahman, M.Z., Kormoker, T., Idris, A.M. and Phoungthong, K., 2022. Distribution of heavy metals in water and sediment of an urban river in a developing country: A probabilistic risk assessment. International Journal of Sediment Research, 37(2), pp. 173-187. https://doi.org/10.1016/j.ijsrc.2021.09.002

ANA, 2018. Clasificación de los cuerpos de agua continentales superficiales. Lima - Perú: Autoridad Nacional del Agua.

Cáceres, M.C., Zegarra, M.E.F., Meza Elguera, N.Y., Sosa Pulcha, S.E., Portocarrero Banda, A.A., Quispe Ortiz, J.A., Salinas Murillo, V. and Jiménez Pacheco, H.G., 2025. Assessment of heavy metal contamination in surface sediments: Seasonal influence in the Majes-Camaná basin of the Arequipa region, Peru. Results in Engineering, 25, pp. 103673. https://doi.org/10.1016/j.rineng.2024.103673

Campero, M., Balseiro, E., Fernández, C.E., Modenutti, B., Prado, P.E., Rivera-Rondon, C.A., Carvajal-Vallejos, F.M., Herrera-Martínez, Y., López-Paría, D.M., Aranguren-Riaño, N., Samanez, I., De los Ríos-Escalante, P.R. and Steinitz-Kannan, M., 2025. Andean lakes: endangered by natural and anthropogenic threats. Inland Waters, 14(4), pp. 1-17. https://doi.org/10.1080/20442041.2024.2395157

CCME, 2001. Canadian sediment quality guidelines for the protection of aquatic life. Winnipeg: Canadian Council of Ministers of the Environment.

Correa-Cuba, O., Fuentes, F. and Coral, R., 2021. Contaminación por metales pesados de la microcuenca agropecuaria del río Huancaray - Perú. Revista de la Sociedad Química del Perú, 87(1), pp. 26-38. https://doi.org/10.37761/rsqp.v87i1.320

Das, A., 2025. Surface water potential zones delineation and spatiotemporal variation characteristics of water pollution and the cause of pollution formation in Brahmani River Basin, Odisha. HydroResearch, 8, pp. 99-112. https://doi.org/10.1016/j.hydres.2024.10.002

Dellinger, M., Hilton, R.G., Baronas, J.J., Torres, M.A., Burt, E.I., Clark, K.E., Galy, V., Ccahuana Quispe, A.J. and West, A.J., 2023. High rates of rock organic carbon oxidation sustained as Andean sediment transits the Amazon foreland-floodplain. Proceedings of the National Academy of Sciences, 120(39), pp. 1-9. https://doi.org/10.1073/pnas.2306343120

Feige Gault, K.B., Gammon, P. and Fortin, D., 2015. A geochemical characterization of cold-water natural acid rock drainage at the Zn-Pb XY deposit, Yukon, Canada. Applied Geochemistry, 62, pp. 35-47. https://doi.org/10.1016/j.apgeochem.2015.06.003

Fu, X., Xie, X., Charlet, L. and He, J., 2023. A review on distribution, biogeochemistry of antimony in water and its environmental risk. Journal of Hydrology, 625(PB), pp. 130043. https://doi.org/10.1016/j.jhydrol.2023.130043

Goren, A.Y., Recepoglu, Y.K., Karagunduz, A., Khataee, A. and Yoon, Y., 2022. A review of boron removal from aqueous solution using carbon-based materials: An assessment of health risks. Chemosphere, 293, pp. 133587. https://doi.org/10.1016/j.chemosphere.2022.133587

Guo, H., Liu, C., Yan, S., Yin, J. and Shan, J., 2024. Source, distribution, and geochemical processes of geogenic high chromium groundwater around the world: A critical review. Journal of Hydrology, 638, pp. 131480. https://doi.org/10.1016/j.jhydrol.2024.131480

Islam, M.S., Idris, A.M., Islam, A., Ali, M.M. and Rakib, M.R.J., 2021. Hydrological distribution of physicochemical parameters and heavy metals in surface water and their ecotoxicological implications in the Bay of Bengal coast of Bangladesh. Environmental Science and Pollution Research, 28(48), pp. 68585-68599. https://doi.org/10.1007/s11356-021-15353-9

Kumar, S., Shukla, A.D. and Venkatesh, A.S., 2024. Vanadium rich Fe-Ti oxide and Cu-sulphide mineralization in Paleoproterozoic Mangikhuta volcanics, Central Indian Craton: metallogenic and petrogenetic implications. Ore and Energy Resource Geology, 16(February), pp. 100041. https://doi.org/10.1016/j.oreoa.2024.100041

Leiva-Tafur, D., Rascón, J., Corroto de la Fuente, F., Goñas, M., Gamarra, O.A. and Oliva-Cruz, M., 2024. Spatio-temporal evaluation of metals and metalloids in the water of high Andean livestock micro-watersheds, Amazonas, Peru. Heliyon, 10(12), pp. e33013. https://doi.org/10.1016/j.heliyon.2024.e33013

Li, F., Wei, L., Liu, Y., Deng, H., Cui, J. and Wang, J., 2024a. Science of the Total Environment Characterization of dissolved organic matter in rivers impacted by acid mine drainage: Components and complexation with metals. Science of the Total Environment, 926(March), pp. 171960. https://doi.org/10.1016/j.scitotenv.2024.171960

Li, S., Huang, Y., Chen, Z., Chen, L., Wignall, P.B., Dong, J., Liu, X., Zheng, H., Wang, G., Wei, Z. and Zhu, Z., 2024b. Variations in antimony isotope and toxic metals across the Guadalupian-Lopingian (Permian) boundary at Penglaitan, China: Implications for the Emeishan volcanism and marine extinction. Earth and Planetary Science Letters, 648(November), pp. 119096. https://doi.org/10.1016/j.epsl.2024.119096

Liu, J., Kang, H., Tao, W., Li, H., He, D., Ma, L., Tang, H., Wu, S., Yang, K. and Li, X., 2023. A spatial distribution – Principal component analysis (SD-PCA) model to assess pollution of heavy metals in soil. Science of The Total Environment, 859(November 2022), pp. 160112. https://doi.org/10.1016/j.scitotenv.2022.160112

Lopez, S., 2018. Evaluación de la calidad del agua respecto a metales pesados presentes en el río Tambo provincia de Islay, 2016-2018. Arequipa: Universidad Nacional de San Agustín de Arequipa.

Marfil, S. and Maiza, P., 2012. Geochemistry of Hydrothermal Alteration in Volcanic Rocks. In: D. Panagiotaras, ed. Geochemistry - Earth's System Processes. Rijeka: InTech. pp. 39-70.

Martel, G., Torres, J. and Jara, W.H., 2018. Variación del pH en aguas superficiales debido a drenajes ácidos de roca en la subcuenca Quillcay, Huaraz, Ancash. Revista de Glaciares y Ecosistemas de Montaña, 5(5), pp. 57-68. https://doi.org/10.36580/rgem.i5.57-68

MINAM-OEFA, 2015. Informe de evaluación ambiental del embalse Pasto Grande, años 2014 y 2015. Lima: Ministerio del Ambiente y el Organismo de Evaluación y Fiscalización Ambiental del Perú.

MINAM, Ministerio del Ambiente, 2017. Aprueban Estándares de Calidad Ambiental (ECA) para agua y establecen Disposiciones Complementarias. El Peruano, pp. 10-19.

Miranda, L.S., Wijesiri, B., Ayoko, G.A., Egodawatta, P. and Goonetilleke, A., 2021. Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Research, 202, pp. 117386. https://doi.org/10.1016/j.watres.2021.117386

Mishra, S. and Kumar, A., 2021. Estimation of physicochemical characteristics and associated metal contamination risk in the Narmada river, India. Environmental Engineering Research, 26(1), pp. 1-11. https://doi.org/10.4491/eer.2019.521

Mohammad, M., Rahman, S., Islam, S. and Jahan, R., 2022. Distribution of heavy metals in water and sediment of an urban river in a developing country: A probabilistic risk assessment. International Journal of Sediment Research, 37(2), pp. 173-187. https://doi.org/10.1016/j.ijsrc.2021.09.002

Murray, J., Guzmán, S., Tapia, J. and Nordstrom, D.K., 2023. Silicic volcanic rocks, a main regional source of geogenic arsenic in waters: Insights from the Altiplano-Puna plateau, Central Andes. Chemical Geology, 629, pp. 121473. https://doi.org/10.1016/j.chemgeo.2023.121473

Núñez, M., Benites, E. and Zevallos, M., 2014. Evaluación de la calidad del agua asociada al drenaje ácido de mina (DAM) en el río Yauli en época de estiaje distrito de Yauli–Junín. UCV - Scientia, 6(1), pp. 25-30.

OMS, 1996. Directrices para la calidad del agua potable, vol. 1, Recomendación OMS. Ginebra: Organización Mundial de la Salud.

Pandarinath, K., 2022. Application potential of chemical weathering indices in the identification of hydrothermally altered surface volcanic rocks from geothermal fields. Geosciences Journal, 26(3), pp. 415-442. https://doi.org/10.1007/s12303-021-0042-2

Paz, M. and Montecinos, T., 2011. Glaciares andinos. Recursos hídricos y cambio climático: desafío para la justicia climática en el Cono Sur. Santiago: Programa Chile Sustentable.

Qin, S., Li, X., Huang, J., Li, W., Wu, P., Li, Q. and Li, L., 2024. Inputs and transport of acid mine drainage-derived heavy metals in karst areas of Southwestern China. Environmental Pollution, 343(December 2023), pp. 123243. https://doi.org/10.1016/j.envpol.2023.123243

Qu, H., Ding, K., Ao, M., Ye, Z., Liu, T., Hu, Z., Cao, Y., Morel, J.L., Baker, A.J.M., Tang, Y., Qiu, R. and Wang, S., 2024. New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release. Water Research, 262(July), pp. 122051. https://doi.org/10.1016/j.watres.2024.122051

R Core Team, 2024. R: A language and environment for statistical computing.

Romain, J., Fai, V., Tamwa, M., Nguenamadje, D., Godwin, J., Bessem, O., Bertrand, G. and Chandra, B., 2025. Hydrothermal synthesis of a nickel-oxide-infused orange peel nanobiocomposite for enhanced heavy metal removal from mining wastewater. Hybrid Advances, 9, pp. 100392. https://doi.org/10.1016/j.hybadv.2025.100392

Romero-Mujalli, G., Hartmann, J., Hosono, T., Louvat, P., Okamura, K., Delmelle, P., Amann, T. and Böttcher, M.E., 2022. Hydrothermal and magmatic contributions to surface waters in the Aso caldera, southern Japan: Implications for weathering processes in volcanic areas. Chemical Geology, 588, pp. 120612. https://doi.org/10.1016/j.chemgeo.2021.120612

Ruiz, H., 2019. Análisis correlacional entre los índices bióticos con macroinvertebrados y la concentración de metales tóxicos en las aguas del río Llaucano, Bambamarca - Perú, 2019. Universidad Privada del Norte.

Santofimia, E., López-Pamo, E., Palomino, E.J., González-Toril, E. and Aguilera, Á., 2017. Acid rock drainage in Nevado Pastoruri glacier area (Huascarán National Park, Peru): hydrochemical and mineralogical characterization and associated environmental implications. Environmental Science and Pollution Research, 24(32), pp. 25243-25259. https://doi.org/10.1007/s11356-017-0093-0

Senze, M., Kowalska-Góralska, M., Czy?, K. and Wondo?owska-Grabowska, A., 2023. Release of Selected Metals (Al, Cd, Cu, Mn, Ni, Fe, Zn) from River Bottom Sediments: An Experimental Study. Limnological Review, 23(2), pp. 50-69. https://doi.org/10.3390/limnolrev23020004

Simmonds, V., Jahangiryar, F., Moazzen, M. and Ravaghi, A., 2017. Distribution of base metals and the related elements in the stream-sediments around the Ahar area (NW Iran) and their implications. Geochemistry, 77(3), pp. 429-441. https://doi.org/10.1016/j.chemer.2017.07.006

Simon, I., Pfaff, K., Navarre-Sitchler, A., Crespo, J., Holley, E., Vanzin, G., Guillen, M.N., Ticona-Corrales, S. and Sharp, J., 2024. Geological and anthropogenic contributions of metal(loid)s in the artisanal and small-scale mining-impacted Ocoña watershed of Arequipa, Peru. Applied Geochemistry, 168, pp. 106028. https://doi.org/10.1016/j.apgeochem.2024.106028

Singh, A.P., Srivastava, P.C. and Srivastava, P., 2008. Relationships of Heavy Metals in Natural Lake Waters with Physico-chemical Characteristics of Waters and Different Chemical Fractions of Metals in Sediments. Water, Air, and Soil Pollution, 188, pp. 181-193. https://doi.org/10.1007/s11270-007-9534-6

Singh, R., Singh, A., Balomajumder, C. and Kumar, A., 2025. Assessment of industrial effluent discharges contributing to Ganga water pollution through a multivariate statistical framework: investigating the context of Indian industries. Environmental Science and Pollution Research, 32. https://doi.org/10.1007/s11356-024-35823-0

Steinmuller, K. and Zavala, B.C., 1997. Hidrotermalismo en el Sur del Perú. Vigilancia de la Actividad Volcánica e Hidrotermalismo en el Sur del Perú, 18 Serie D. Lima: Instituto Geológico minero y metalúrgico.

Tan, S., Zhang, T., Cheng, C., Wang, Z. and Li, H., 2025. Efficient removal and stepwise recovery of various heavy metals from water by using calcium carbonate with different activity. Separation and Purification Technology, 354(P5), pp. 129142. https://doi.org/10.1016/j.seppur.2024.129142

Wu, Y., Sun, G., Huang, J., Fan, H., Li, X., Zhou, M., Xia, Y. and Feng, X., 2024. Geochimica et Cosmochimica Acta Antimony isotopic fractionation during intensive chemical weathering of basalt in the tropics. Geochimica et Cosmochimica Acta, 367, pp. 29-40. https://doi.org/10.1016/j.gca.2023.12.029

Zhang, K., Shi, Z., Ding, X., Ge, L., Xiong, M., Zhang, Q., Lai, W. and Ge, L., 2024. Identification of Anthropogenic and Natural Inputs of Sulfate into River System of Carbonate Zn-Pb Mining Area in Southwest China: Evidence from Hydrochemical Composition, ?34SSO4 and ?18OSO4. Water, 16(16), pp. 2311. https://doi.org/10.3390/w16162311

Zimmer, A., Brito, M., J. Alegre, C., W. Sánchez, J. and Recharte, J., 2018. Implementación de Dos Sistemas de Biorremediación como Estrategia para la Prevención y Mitigación de los Efectos del Drenaje Ácido de Roca en la Cordillera Blanca, Perú. Revista de Glaciares y Ecosistemas de Montaña, 4, pp. 57-76. https://doi.org/10.36580/rgem.i4.57-76




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.62708

DOI: http://dx.doi.org/10.56369/tsaes.6270



Copyright (c) 2025 Jorge Garate-Quispe, Roger Gonzales-Aliaga, Vladimiro Ibañez-Quispe

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.