Ruminal fermentation and methane emissions of corn silage harvested at the R4 and R5 phenological stages

Roselia Ramírez Díaz, Rene Pinto Ruiz, Francisco Javier Medina Jonapá, Adalberto Hernández López, Deb Raj Aryal, Luis Fernando Molina Paniagua

Abstract


Background: Corn silage is widely used in ruminant feeding; however, the ruminal utilization depends on the physiological stage at which the ensiling process is carried out. Objective: To evaluate the effect of corn silage harvested at the R4 and R5 phenological stages on ruminal fermentation and methane emissions. Methodology: Temperature and pH analyses were performed, as well as evaluations of chemical composition, starch content, fermentation, ruminal degradation, and greenhouse gas (GHG) emissions. Results: Temperature and pH were not found to differ between treatments (P>0.05). However, differences were observed in chemical composition, with higher dry matter and organic matter content in T2, while T1 showed higher ash and neutral detergent fiber content (P<0.05). The reproductive stage of corn influenced starch concentration. In terms of fermentation, T2 had the highest maximum gas volume, while T1 showed a higher fermentation rate (P<0.05). Likewise, the rapid fermentation fraction was higher in T1, while the medium and slow fermentations were higher in T2. In vitro dry matter degradation, T1 obtained the highest values. The corn harvest stage affects GHG emissions, with T2 recording the highest values (P<0.05). Implications: The phenological stage of corn during ensiling impacts ruminal fermentation and GHG emissions. Conclusion: Ensiling corn at the R4 physiological stage achieves better ruminal degradation and efficiency, reducing GHG emissions.

Keywords


Corn silage; fermentation parameters; methane.

Full Text:

PDF

References


Ali, W., Nadeem, M., Ashiq, W., Zaeem, M., Thomas, R., Kavanagh, V. and Cheema, M., 2019. Forage yield and quality indices of silage-corn following organic and inorganic phosphorus amendments in podzol soil under boreal climate. Agronomy, 9(9). pp. 489-508. https://doi.org/10.3390/agronomy9090489

Amador, A.L. and Boschini, C., 2000. Fenología productiva y nutricional de maíz para la producción de forraje. Agronomía Mesoamericana, 11(1), pp. 171–177. http://www.redalyc.org/articulo.oa?id=43711126

Borreani, G., Tabacco, E., Schmidt, R.J., Holmes, B.J. and Muck, R.E., 2018. Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), pp. 3952–3979. https://doi.org/10.3168/JDS.2017-13837

De Souza, A.M., Neumann, M., Bumbieris Junior, V.H., Manchur, A. D., Pontarolo, G.B., Heker Junior, J.C., Gavlak, T.F. and Plodoviski, D.C. (2021). Effect of advancing maturity stages of corn for silage on chemical characterization, digestibility and production costs. Semina:Ciencias Agrarias, 42(1), pp. 283–300. https://doi.org/10.5433/1679-0359.2021v42n1p283

Delgado-Ramírez, G., Bolaños-González, M.A., Quevedo-Nolasco, A., López-Pérez, A. and Estrada-Ávalos, J., 2023. Estimating the crop coefficient of forage maize using remote sensing. Ingeniería agrícola y biosistemas, 15(1), pp. 17–35. https://doi.org/10.5154/R.INAGBI.2022.09.075

Dong, J., Li, S., Chen, X., Sun, Z., Sun, Y., Zhen, Y., Qin, G., Wang, T., Demelash, N. and Zhang, X., 2022. Effects of Lactiplantibacillus plantarum inoculation on the quality and bacterial community of whole-crop corn silage at different harvest stages. Chemical and Biological Technologies in Agriculture, 9, p. 57. https://doi.org/10.1186/s40538-022-00326-y

Ferraretto, L.F., Shaver, R.D. and Luck, B.D., 2018. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. Journal of Dairy Science, 101 (5), pp. 3937–3951. https://doi.org/10.3168/jds.2017-13728

Ferrero, F., Tabacco, E., Piano, S., Casale, M. and Borreani, G., 2021. Temperature during conservation in laboratory silos affects fermentation profile and aerobic stability of corn silage treated with Lactobacillus buchneri, Lactobacillus hilgardii, and their combination. Journal of Dairy Science, 104(2), pp. 1696–1713. https://doi.org/10.3168/jds.2020-18733

García-Chávez, I., Meraz-Romero, E., Castelán-Ortega, O., Zaragoza-Esparza, J., Avalos, J.O., Jiménez, L.E.R. and González-Ronquillo, M., 2022, Corn silage, a systematic review of the quality and yield in different regions around the world. Ciencia Tecnologia Agropecuaria, 23(3), p. e2547. https://doi.org/10.21930/rcta.vol23_num3_art:2547

Getachew, G., Robinson, P.H., DePeters, E.J. and Taylor, S.J., 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology, 111(1–4), pp. 57–71. https://doi.org/10.1016/S0377-8401(03)00217-7

Gusmão, J.O., Lima, L.M., Ferraretto, L.F., Casagrande, D.R. and Bernardes, T.F., 2021. Effects of hybrid and maturity on the conservation and nutritive value of snaplage’, Animal Feed Science and Technology, 274, p. 114899. https://doi.org/10.1016/J.ANIFEEDSCI.2021.114899

Hidalgo, P., Macay Anchundia, M., Molina Hidrovo, C. and Taipe Taipe, M.V., 2023. Genotipos de maíz para la producción y conservación de forraje en forma de ensilaje. Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 5(7), pp. 358-371. https://doi.org/10.59169/pentaciencias.v5i7.946

Horst, E.H., López, S., Neumann, M., Giráldez, F.J. and Bumbieris Junior, V.H., 2020. Effects of hybrid and grain maturity stage on the ruminal degradation and the nutritive value of maize forage for silage. Agriculture (Switzerland), 10(7), pp. 1–17. https://doi.org/10.3390/agriculture10070251

Hurtado, E. A., Arteaga-Chávez, F., Zambrano-Zambrano, B.A. and Vera-Mendoza, A.J., 2020. Inoculación de Lactobacillus plantarum para la fermentación y conservación del ensilaje de maíz. Revista ESPAMCIENCIA, 11(2), pp. 108–114. https://doi.org/https://doi.org/10.51 260/revista_espamci encia.v11i2.237

Kolar, S., Vrani?, M., Boži?, L., Krapinec, K., Star?evi?, K., Mašek, T. and Bošnjak, K., 2022. The effect of maize silage maturity and cutting height on dairy cow and beef cattle performance. Sto?arstvo: ?asopis za unapre?enje sto?arstva, 76(1-2), pp. 20-33. https://doi.org/10.33128/s.76.1-2.3

Leden?an, T., Horvat, D., Špoljari? Markovi?, S., Sve?njak, Z., Jambrovi?, A. and Šimi?, D., 2022. Effect of harvest date on kernel quality and antioxidant activity in su1 sweet corn genotypes. Agronomy, 12(5), p. 1224. https://doi.org/10.3390/agronomy12051224

Mancipe-Muñoz, E. A., Castillo-Sierra, J., Vargas-Martínez, J. de J. and Avellaneda-Avellaneda, Y., 2022. Calidad composicional del ensilaje de tres cultivares de maíz (Zea mays) del trópico alto colombiano. Agronomia Mesoamericana, 33(2). https://doi.org/10.15517/am.v33i2.46412

Menke, K. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, pp. 7–55. https://cir.nii.ac.jp/crid/1573387450798066432

Miranda-Romero, L.A., Sandoval-González, L. and Amendola-Massiotti, R., 2015. Producción de gas como método para estimar in vitro la concentración de carbohidratos fermentables en rumen. In XXIV Congreso de la Asociación Latinoamericana de Producción Animal. Puerto Varas, Chile, 9-13 Noviembre, 2015. p. 146 https://ojs.alpa.uy/index.php/ojs_files/article/download/2651/1066/

Moate, P. J., Clarke, T., Davis, L. H. and Laby, R. H., 1997. Rumen gases and bloat in grazing dairy cows. The Journal of Agricultural Science, 129(4), pp. 459–469. https://doi.org/10.1017/S0021859697004930

Official Methods of Analysis, 1990. Association of Official Analytical Chemist (AOAC). 15th edn. Washington DC. https://www.aoac.org/official-methods-of-analysis/

Peña, O.M., Velásquez, C., Ferreira, G. and Aguerre, M.J., 2023. Yield, Nutritional Composition, and in vitro Ruminal Digestibility of Conventional and Brown Midrib (BMR) Corn for Silage as Affected by Planting Population and Harvest Maturity. Agronomy, 13(5), p. 1414. https://doi.org/10.3390/agronomy13051414

Peña-Avelino, L.Y., Alva-Pérez, J., Rosales-Martínez, G.N., Hernández-Contreras, S. and Ceballos-Olvera, I., 2024. Estrategias de nutrición y alimentación para reducir las emisiones de metano en rumiantes bajo sistemas pastoriles. Ciencias Veterinarias y Producción Animal, 1(2), pp. 60–73. https://doi.org/10.29059/cvpa.v1i2.18

Ramírez Díaz, R., Pinto Ruiz, R., Guevara Hernández, F., Venegas Venegas, J. A., Reyes Sosa, M. B. y Miranda Romero, L.A., 2021. Efecto del método de extracción del líquido ruminal en la técnica de gas in vitro. Revista de la Facultad de Agronomía de la Universidad del Zulia, 38, pp. 680–690. https://doi.org/https://doi.org/10.47280/RevFacAgron(LUZ).v38.n3.12

Ramírez, D. E., Olmos Colmenero, J. de J., Peña Ramos, A., Sánchez Duarte, J. I., Medina Núñez, E., Gallardo Ramírez, S. and Santana, O. I., 2024. Dry matter accumulation, yield, and nutritional quality of forage of corn hybrids harvested at different days after sowing. Revista Mexicana De Ciencias Pecuarias, 15(2), pp. 287–301. https://doi.org/10.22319/rmcp.v15i2.6554

Rosas-Dávila, M., Morales-Almaraz, E., López-González, F. and Arriaga-Jordan, C.M., 2025. Estimación de metabolitos secundarios y emisiones de metano en ensilados de sorgo. Tropical and Subtropical Agroecosystems, 28(1), p. 018. https://doi.org/10.56369/tsaes.5746

Sandoval, L., Miranda, L.A., Lara, A., Huerta, M., Uribe, M. y Martínez, M.M., 2016. Fermentación in vitro y la correlación del contenido nutrimental de leucaena asociada con pasto estrella. Revista Mexicana de Ciencias Agrícolas, 7(SPE16), pp. 3185–3196. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342016001203185&lng=es&nrm=iso&tlng=es

SAS (2003) User’s Guide: Statistics, Version 9. 6th Edition. Edited by Inc., C.N. SAS Inst. USA. Available at: https://www.sas.com/en_us/software/stat.html

Schofield, P. and Pell, A.N., 1995. Measurement and kinetic analysis of the neutral detergent-soluble carbohydrate fraction of legumes and grasses. Journal of Animal Science, 73(11), pp. 3455–3463. https://doi.org/10.2527/1995.73113455X

Sobalvarro-Mena, J.L., Elizondo-Salazar, J.A. y Rojas-Bourillón, A., 2020. La producción de gas in vitro para estimar la energía neta de lactancia. Agronomía Mesoamericana, 31(2), pp. 311–328. https://doi.org/10.15517/am.v31i2.38497

Solís, L.A. y Castaño, E., 2022. Efectos de los niveles de fertilización, distancias de siembra y momentos de corte sobre la calidad nutricional del ensilaje de maíz Palabras clave adicionales. Archivos de Zootecnia, 71(273), pp. 18–22. https://doi.org/https://doi.org/10.21071/az.v71i273.5606

Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), pp. 3583–3597. https://doi.org/10.3168/JDS.S0022-0302(91)78551-2




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.62546

DOI: http://dx.doi.org/10.56369/tsaes.6254



Copyright (c) 2025 Roselia Ramírez Díaz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.