AGROPRODUCTIVE PARAMETERS AND NUTRITIONAL VALUE IN PEANUT PLANTS IN RESPONSE TO SILICON BIOSTIMULATION

Luis Tarquino Llerena-Ramos, Juan José Reyes-Pérez, Erika Vanessa Castro Klinger, Juan Antonio Torres-Rodriguez, Sergio Rodríguez-Rodríguez, Maria de los Angeles Sariñana-Navarrete

Abstract


Background. Peanuts (Arachis hypogaea L.) are a legume recognized for their high value in macro and micronutrients, whose combination makes it a functional food in various diets. In addition, the use of silicon as a biostimulant, and its relationship with the symbiosis established in legumes, make it a beneficial element of interest in peanut cultivation. Objective. To evaluate the edaphic application of silicon (Si) on morphological changes, yield, proximal seed composition, as well as the profitability index of peanut crops. Si was used at a dose of 28, 35 and 42 kg/ha, and a control group (without Yes). The change in crop growth, yield and its components, pod quality, proximal composition, and B/C ratio of Si use were evaluated. Results. The results propose a positive Si footprint in the crop, by significantly increasing the height of the plants (9.75%), an improvement in the quality of the pods, an increase in yield (11%), a significant change in the proximal composition (more protein, lipids and ash, and lower moisture index), and an increase in profitability (16.47% higher than the ordinary index). Additionally, an advance in the number of days needed for flowering to occur was noted. Implications. This could be due to the interaction of Si with the symbiosis that occurs between legumes and nitrogen-fixing bacteria, in addition to the biostimulant response of plants to Si. Conclusions. The Si promoted growth, productivity, and also generated a positive economic footprint in peanut cultivation.

Keywords


Arachis hypogaea L; biostimulants; proximal composition; earliness; proteins; yield.

Full Text:

PDF

References


Alafita-Vásquez, G., Hernández-Barrios, M., Teoba-Domínguez, S., Zulueta-Rodríguez, R., Hernández-Montiel, L.G., Alemán-Chávez, I. and Lara-Capistrán, L., 2021. Economic profitability analysis of husk tomato (Physalis ixocarpa Brot. ex Hornem.) under different silicon dioxide concentrations. Agro Productividad. https://doi.org/10.32854/agrop.v14i10.2002

Arévalo-Briones, K.P., Pastrano-Quintana, E. and Armijos-Jumbo, V., 2016. Relación beneficio–costo por tratamiento en la producción orgánica de las hortalizas (Cilantro, Lechuga, Cebolla Roja, Cebolla de Rama) en el cantón Santo Domingo de Los Colorados. Revista Publicando, 3(7), pp. 503–528.

Bakhat, H.F., Bibi, N., Hammad, H.M., Shah, G.M., Abbas, S., Rafique, H.M., Mohamed, A.K.S.H. and Maqbool, M.M., 2023. Effect of Silicon Fertilization on Eggplant Growth and Insect Population Dynamics. Silicon, 15(8), pp. 3515–3523. https://doi.org/10.1007/s12633-022-02279-1.

Cho, M., Myat, L., Nang, K.K. and Kyi, M., 2023. Evaluation of proximate and mineral compositions of four different types of peanut seed variety in Myanmar. Agpe The Royal Gondwana Research Journal, 04(05), pp. 23–31.

Çiftçi, S. and Suna, G., 2022. Functional components of peanuts (Arachis Hypogaea L.) and health benefits: A review. Future foods, 5, p. 100140. https://doi.org/10.1016/j.fufo.2022.100140

Coquerel, R., Arkoun, M., Dupas, Q., Leroy, F., Laîné, P. and Etienne, P., 2023. Silicon Supply Improves Nodulation and Dinitrogen Fixation and Promotes Growth in Trifolium incarnatum Subjected to a Long-Term Sulfur Deprivation. Plants, 12(12), p. 2248. https://doi.org/10.3390/plants12122248

Dong, Z., Li, Y., Xiao, X., Chen, Y. and Shen, X., 2018. Silicon effect on growth, nutrient uptake, and yield of peanut (Arachis hypogaea L.) under aluminum stress. Journal of Plant Nutrition, 41(15), pp. 2001–2008. https://doi.org/10.1080/01904167.2018.1485163

El Moukhtari, A., Lamsaadi, N., Oubenali, A., Mouradi, M., Savoure, A. and Farissi, M., 2022. Exogenous Silicon Application Promotes Tolerance of Legumes and Their N2 Fixing Symbiosis to Salt Stress. Silicon, 14(12), pp. 6517–6534. https://doi.org/10.1007/s12633-021-01466-w

Grankina, A., Bocharnikova, E. and Matichenkov, V., 2022. Silicon-based Biostimulators for Sustainable Agriculture. In: M. Hasanuzzaman, B. Hawrylak-Nowak, T. Islam and M. Fujita, eds. Biostimulants for Crop Production and Sustainable Agriculture. CABI GB. pp. 85–94. https://doi.org/10.1079/9781789248098.0006

Hosseini-Nasr, F., Etesami, H. and Alikhani, H.A., 2023. Silicon Improves Plant Growth-Promoting Effect of Nodule Non-Rhizobial Bacterium on Nitrogen Concentration of Alfalfa Under Salinity Stress. Journal of Soil Science and Plant Nutrition, 23(1), pp. 496–513. https://doi.org/10.1007/s42729-022-01061-x

INAMHI (Instituto Nacional de Meteorología e Hidrología)., 2024. Anuario meteorológico del Cantón Mocache: Estación Experimental Tropical Pichilingue. Mocache, Los Ríos Ecuador. pp. 12

Irfan, M., Maqsood, M.A., Rehman, H. ur, Mahboob, W., Sarwar, N., Hafeez, O.B.A., Hussain, S., Ercisli, S., Akhtar, M. and Aziz, T., 2023. Silicon Nutrition in Plants under Water-Deficit Conditions: Overview and Prospects. Water, 15(4), p. 739. https://doi.org/10.3390/w15040739

Jalilzadeh Khoie, E., Jabbarzadeh, Z., Norouzi, P., Barin, M. and Razavi, M., 2024. Silicon spray affect floricultural traits and leaf elemental nutrient concentrations of Rose ‘Beverly Watson’. Journal of Plant Nutrition, 47(1), pp. 145–156. https://doi.org/10.1080/01904167.2023.2262513

Jiang, Y., Yue, Y., Wang, Z., Lu, C., Yin, Z., Li, Y. and Ding, X., 2024. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. Journal of Agricultural and Food Chemistry, 72(10), pp. 5107–5121. https://doi.org/10.1021/acs.jafc.3c09074

Jinger, D., Dhar, S., Dass, A., Sharma, V.K., Jhorar, P., Paramesh, V., Gupta, G., Parihar, M., Kumar, D. and Singh, S., 2023. Combined Fertilization of Silicon and Phosphorus in Aerobic Rice-Wheat Cropping and its Impact on System Productivity, Water Use Efficiency, Soil Health, Crop Resilience, and Profitability. Silicon, 15(17), pp. 7609–7620. https://doi.org/10.1007/s12633-023-02598-x

Khan, W.-D., Sharif, F., Naeem, M.A., Farooq, M.A., Siddiq, Z. and Imran, M., 2023. Chitosan Polymerized Silica Composite as a Potential Silicon Source: Modulation on Antioxidant Enzymes, Ionic Homeostasis, and Grain Quality in Maize Plants Under Na+ Stress. Journal of Plant Growth Regulation, 42(4), pp. 2374–2388. https://doi.org/10.1007/s00344-022-10711-4

Kovács, S., Kutasy, E. and Csajbók, J., 2022. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. Plants, 11(9), p. 1223. https://doi.org/10.3390/plants11091223

Lamlom, S.F., Abdelghany, A.M., Ren, H., Ali, H.M., Usman, M., Shaghaleh, H., Hamoud, Y.A. and El-Sorady, G.A., 2024. Revitalizing maize growth and yield in water-limited environments through silicon and zinc foliar applications. Heliyon, 10(15). https://doi.org/10.1016/j.heliyon.2024.e35118

Li, H., Li, C., Song, X., Liu, Y., Gao, Q., Zheng, R., Li, J., Zhang, P. and Liu, X., 2022. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Scientific reports, 12(1), p. 2758. https://doi.org/10.1038/s41598-022-06789-1

Luyckx, M., Hausman, J.-F., Lutts, S. and Guerriero, G., 2017. Silicon and Plants: Current Knowledge and Technological Perspectives. Frontiers in plant science, 8, p. 411. https://doi.org/10.3389/fpls.2017.00411.

Ma, J.F. and Yamaji, N., 2008. Functions and transport of silicon in plants. Cellular and molecular life sciences, 65, pp. 3049–3057. https://doi.org/10.1007/s00018-008-7580-x

Mandlik, R., Thakral, V., Raturi, G., Shinde, S., Nikoli?, M., Tripathi, D.K., Sonah, H. and Deshmukh, R., 2020. Significance of silicon uptake, transport, and deposition in plants. Journal of experimental botany, 71(21), pp. 6703–6718. https://doi.org/10.1093/jxb/eraa301

Parilli-Moser, I., Hurtado-Borroso, S., Guasch-Ferré, M., Lamuela-Raventós, R.M., 2022. Effect of Peanut Consumption on Cardiovascular Risk Factors: A Randomized Clinical Trail and Meta-Analysis. Frontiers in Nutrition, 9, 859978. https://doi.org/10.3389/fnut.2022.853378

Pavlovic, J., Kostic, L., Bosnic, P., Kirkby, E.A. and Nikolic, M., 2021. Interactions of Silicon with Essential and Beneficial Elements in plants. Frontiers in Plant Science, 12, p. 697592. https://doi.org/10.3389/fpls.2021.697592

Prajapat, B.S., Kaushik, M.K., Sharma, S.K., Chaudhary, R. and Bairwa, D.S.D.D., 2022. Effect of Active Silica on Growth and Profitability of Maize under Organic Farming. Indian Journal of Ecology, 49(1), pp. 124–128. https://doi.org/10.55362/IJE/2022/3488

Putra, R., Waterman, J.M., Mathesius, U., Wojtalewicz, D., Powell, J.R., Hartley, S.E. and Johnson, S.N., 2022. Benefits of silicon-enhanced root nodulation in a model legume are contingent upon rhizobial efficacy. Plant and Soil, 477(1), pp. 201–217. https://doi.org/10.1007/s11104-022-05358-9

Rastogi, A., Yadav, S., Hussain, S., Kataria, S., Hajihashemi, S., Kumari, P., Yang, X. and Brestic, M., 2021. Does silicon really matter for the photosynthetic machinery in plants? Plant Physiology and Biochemistry, 169, pp. 40–48. https://doi.org/10.1016/j.plaphy.2021.11.004

Rea, R.S., Islam, M.R., Rahman, M.M., Nath, B. and Mix, K., 2022. Growth, Nutrient Accumulation, and Drought Tolerance in Crop Plants with Ailicon Application: A Review. Sustainability, 14(8), p. 4525. https://doi.org/10.3390/su14084525

Sanni, J.A., Sanni, G.O., Awoniyi, R.R., Osanyinlusi, R., Richards, Y.E., Adesina, G.I., Adenuga, O.O., Apata, S.A. and Ekun, O.E., 2024. Effects of Processing on the Proximate Composition, Mineral Content and the Phytochemical Analysis of Groundnut Seeds (Arachis hypogeae). Biology, Medicine, & Natural Product Chemistry, 13(1), pp. 63–71. https://doi.org/10.14421/biomedich.2024.131.63-71

Shamshiripour, M., Motesharezadeh, B., Rahmani, H.A., Alikhani, H.A. and Etesami, H., 2022. Optimal Concentrations of Silicon Enhance the Growth of Soybean (Glycine Max L.) Cultivars by Improving Nodulation, Root System Architecture, and Soil Biological Properties. Silicon, 14(10), pp. 5333–5345. https://doi.org/10.1007/s12633-021-01273-3

Shao, S., Chen, M., Liu, W., Hu, X., Wang, E.-T., Yu, S. and Li, Y., 2020. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Systematic and Applied Microbiology, 43(5), p. 126101. https://doi.org/10.1016/j.syapm.2020.126101

Sharma, S., Mushtaq, M., Sudhakaran, S., Thakral, V., Raturi, G., Bansal, R., Kumar, V., Vats, S., Shivaraj, S.M. and Deshmukh, R., 2023. Silicon Uptake, Transport, and Accumulation in Plants. In: S. Padney, D.K. Tripathi, V.P. Singh, S. Sharma and D.K. Chauhan, eds. Beneficial Chemical Elements of Plants: Recent Developments and Future Prospects. Wiley Online Library. pp. 205–226. https://doi.org/10.1002/9781119691419.ch9

Souri, Z., Khanna, K., Karimi, N. and Ahmad, P., 2021. Silicon and Plants: Current Knowledge and Future Prospects. Journal of Plant Growth Regulation, 40, pp. 906–925. https://doi.org/10.1007/s00344-020-10172-7

Tillman, B.L. and Stalker, H.T., 2010. Peanut. In: J. Vollmann and I. Rajcan, eds. Oil crops. Springer. pp. 287–315. https://doi.org/10.1007/978-0-387-77594-4_9

Toomet, O., 2017. Nutritional chemistry of the peanut (Arachis hupogaea). Critical Reviews in Food Science and Nutrition. 58(17), pp. 3042-3053. https://doi.org/10.1080/10408398.2017.1339015

Zhang, J., Yun, G., Feng, G.U.O., Li, X.-G. and Wan, S., 2020. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. Journal of Integrative Agriculture, 19(8), pp. 1919–1927. https://doi.org/10.1016/S2095-3119(19)62763-2




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.62324

DOI: http://dx.doi.org/10.56369/tsaes.6232



Copyright (c) 2025 Luis Tarquino Llenera-Ramos, Juan José Reyes-Pérez, Erika Vanessa Castro Klinger, Juan Antonio Torres-Rodriguez, Sergio Rodríguez-Rodríguez, Maria de los Angeles Sariñana-Navarrete

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.