AGROPRODUCTIVE PARAMETERS AND NUTRITIONAL VALUE IN PEANUT PLANTS IN RESPONSE TO SILICON BIOSTIMULATION
Abstract
Keywords
Full Text:
PDFReferences
Alafita-Vásquez, G., Hernández-Barrios, M., Teoba-Domínguez, S., Zulueta-Rodríguez, R., Hernández-Montiel, L.G., Alemán-Chávez, I. and Lara-Capistrán, L., 2021. Economic profitability analysis of husk tomato (Physalis ixocarpa Brot. ex Hornem.) under different silicon dioxide concentrations. Agro Productividad. https://doi.org/10.32854/agrop.v14i10.2002
Arévalo-Briones, K.P., Pastrano-Quintana, E. and Armijos-Jumbo, V., 2016. Relación beneficio–costo por tratamiento en la producción orgánica de las hortalizas (Cilantro, Lechuga, Cebolla Roja, Cebolla de Rama) en el cantón Santo Domingo de Los Colorados. Revista Publicando, 3(7), pp. 503–528.
Bakhat, H.F., Bibi, N., Hammad, H.M., Shah, G.M., Abbas, S., Rafique, H.M., Mohamed, A.K.S.H. and Maqbool, M.M., 2023. Effect of Silicon Fertilization on Eggplant Growth and Insect Population Dynamics. Silicon, 15(8), pp. 3515–3523. https://doi.org/10.1007/s12633-022-02279-1.
Cho, M., Myat, L., Nang, K.K. and Kyi, M., 2023. Evaluation of proximate and mineral compositions of four different types of peanut seed variety in Myanmar. Agpe The Royal Gondwana Research Journal, 04(05), pp. 23–31.
Çiftçi, S. and Suna, G., 2022. Functional components of peanuts (Arachis Hypogaea L.) and health benefits: A review. Future foods, 5, p. 100140. https://doi.org/10.1016/j.fufo.2022.100140
Coquerel, R., Arkoun, M., Dupas, Q., Leroy, F., Laîné, P. and Etienne, P., 2023. Silicon Supply Improves Nodulation and Dinitrogen Fixation and Promotes Growth in Trifolium incarnatum Subjected to a Long-Term Sulfur Deprivation. Plants, 12(12), p. 2248. https://doi.org/10.3390/plants12122248
Dong, Z., Li, Y., Xiao, X., Chen, Y. and Shen, X., 2018. Silicon effect on growth, nutrient uptake, and yield of peanut (Arachis hypogaea L.) under aluminum stress. Journal of Plant Nutrition, 41(15), pp. 2001–2008. https://doi.org/10.1080/01904167.2018.1485163
El Moukhtari, A., Lamsaadi, N., Oubenali, A., Mouradi, M., Savoure, A. and Farissi, M., 2022. Exogenous Silicon Application Promotes Tolerance of Legumes and Their N2 Fixing Symbiosis to Salt Stress. Silicon, 14(12), pp. 6517–6534. https://doi.org/10.1007/s12633-021-01466-w
Grankina, A., Bocharnikova, E. and Matichenkov, V., 2022. Silicon-based Biostimulators for Sustainable Agriculture. In: M. Hasanuzzaman, B. Hawrylak-Nowak, T. Islam and M. Fujita, eds. Biostimulants for Crop Production and Sustainable Agriculture. CABI GB. pp. 85–94. https://doi.org/10.1079/9781789248098.0006
Hosseini-Nasr, F., Etesami, H. and Alikhani, H.A., 2023. Silicon Improves Plant Growth-Promoting Effect of Nodule Non-Rhizobial Bacterium on Nitrogen Concentration of Alfalfa Under Salinity Stress. Journal of Soil Science and Plant Nutrition, 23(1), pp. 496–513. https://doi.org/10.1007/s42729-022-01061-x
INAMHI (Instituto Nacional de Meteorología e Hidrología)., 2024. Anuario meteorológico del Cantón Mocache: Estación Experimental Tropical Pichilingue. Mocache, Los Ríos Ecuador. pp. 12
Irfan, M., Maqsood, M.A., Rehman, H. ur, Mahboob, W., Sarwar, N., Hafeez, O.B.A., Hussain, S., Ercisli, S., Akhtar, M. and Aziz, T., 2023. Silicon Nutrition in Plants under Water-Deficit Conditions: Overview and Prospects. Water, 15(4), p. 739. https://doi.org/10.3390/w15040739
Jalilzadeh Khoie, E., Jabbarzadeh, Z., Norouzi, P., Barin, M. and Razavi, M., 2024. Silicon spray affect floricultural traits and leaf elemental nutrient concentrations of Rose ‘Beverly Watson’. Journal of Plant Nutrition, 47(1), pp. 145–156. https://doi.org/10.1080/01904167.2023.2262513
Jiang, Y., Yue, Y., Wang, Z., Lu, C., Yin, Z., Li, Y. and Ding, X., 2024. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. Journal of Agricultural and Food Chemistry, 72(10), pp. 5107–5121. https://doi.org/10.1021/acs.jafc.3c09074
Jinger, D., Dhar, S., Dass, A., Sharma, V.K., Jhorar, P., Paramesh, V., Gupta, G., Parihar, M., Kumar, D. and Singh, S., 2023. Combined Fertilization of Silicon and Phosphorus in Aerobic Rice-Wheat Cropping and its Impact on System Productivity, Water Use Efficiency, Soil Health, Crop Resilience, and Profitability. Silicon, 15(17), pp. 7609–7620. https://doi.org/10.1007/s12633-023-02598-x
Khan, W.-D., Sharif, F., Naeem, M.A., Farooq, M.A., Siddiq, Z. and Imran, M., 2023. Chitosan Polymerized Silica Composite as a Potential Silicon Source: Modulation on Antioxidant Enzymes, Ionic Homeostasis, and Grain Quality in Maize Plants Under Na+ Stress. Journal of Plant Growth Regulation, 42(4), pp. 2374–2388. https://doi.org/10.1007/s00344-022-10711-4
Kovács, S., Kutasy, E. and Csajbók, J., 2022. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. Plants, 11(9), p. 1223. https://doi.org/10.3390/plants11091223
Lamlom, S.F., Abdelghany, A.M., Ren, H., Ali, H.M., Usman, M., Shaghaleh, H., Hamoud, Y.A. and El-Sorady, G.A., 2024. Revitalizing maize growth and yield in water-limited environments through silicon and zinc foliar applications. Heliyon, 10(15). https://doi.org/10.1016/j.heliyon.2024.e35118
Li, H., Li, C., Song, X., Liu, Y., Gao, Q., Zheng, R., Li, J., Zhang, P. and Liu, X., 2022. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Scientific reports, 12(1), p. 2758. https://doi.org/10.1038/s41598-022-06789-1
Luyckx, M., Hausman, J.-F., Lutts, S. and Guerriero, G., 2017. Silicon and Plants: Current Knowledge and Technological Perspectives. Frontiers in plant science, 8, p. 411. https://doi.org/10.3389/fpls.2017.00411.
Ma, J.F. and Yamaji, N., 2008. Functions and transport of silicon in plants. Cellular and molecular life sciences, 65, pp. 3049–3057. https://doi.org/10.1007/s00018-008-7580-x
Mandlik, R., Thakral, V., Raturi, G., Shinde, S., Nikoli?, M., Tripathi, D.K., Sonah, H. and Deshmukh, R., 2020. Significance of silicon uptake, transport, and deposition in plants. Journal of experimental botany, 71(21), pp. 6703–6718. https://doi.org/10.1093/jxb/eraa301
Parilli-Moser, I., Hurtado-Borroso, S., Guasch-Ferré, M., Lamuela-Raventós, R.M., 2022. Effect of Peanut Consumption on Cardiovascular Risk Factors: A Randomized Clinical Trail and Meta-Analysis. Frontiers in Nutrition, 9, 859978. https://doi.org/10.3389/fnut.2022.853378
Pavlovic, J., Kostic, L., Bosnic, P., Kirkby, E.A. and Nikolic, M., 2021. Interactions of Silicon with Essential and Beneficial Elements in plants. Frontiers in Plant Science, 12, p. 697592. https://doi.org/10.3389/fpls.2021.697592
Prajapat, B.S., Kaushik, M.K., Sharma, S.K., Chaudhary, R. and Bairwa, D.S.D.D., 2022. Effect of Active Silica on Growth and Profitability of Maize under Organic Farming. Indian Journal of Ecology, 49(1), pp. 124–128. https://doi.org/10.55362/IJE/2022/3488
Putra, R., Waterman, J.M., Mathesius, U., Wojtalewicz, D., Powell, J.R., Hartley, S.E. and Johnson, S.N., 2022. Benefits of silicon-enhanced root nodulation in a model legume are contingent upon rhizobial efficacy. Plant and Soil, 477(1), pp. 201–217. https://doi.org/10.1007/s11104-022-05358-9
Rastogi, A., Yadav, S., Hussain, S., Kataria, S., Hajihashemi, S., Kumari, P., Yang, X. and Brestic, M., 2021. Does silicon really matter for the photosynthetic machinery in plants? Plant Physiology and Biochemistry, 169, pp. 40–48. https://doi.org/10.1016/j.plaphy.2021.11.004
Rea, R.S., Islam, M.R., Rahman, M.M., Nath, B. and Mix, K., 2022. Growth, Nutrient Accumulation, and Drought Tolerance in Crop Plants with Ailicon Application: A Review. Sustainability, 14(8), p. 4525. https://doi.org/10.3390/su14084525
Sanni, J.A., Sanni, G.O., Awoniyi, R.R., Osanyinlusi, R., Richards, Y.E., Adesina, G.I., Adenuga, O.O., Apata, S.A. and Ekun, O.E., 2024. Effects of Processing on the Proximate Composition, Mineral Content and the Phytochemical Analysis of Groundnut Seeds (Arachis hypogeae). Biology, Medicine, & Natural Product Chemistry, 13(1), pp. 63–71. https://doi.org/10.14421/biomedich.2024.131.63-71
Shamshiripour, M., Motesharezadeh, B., Rahmani, H.A., Alikhani, H.A. and Etesami, H., 2022. Optimal Concentrations of Silicon Enhance the Growth of Soybean (Glycine Max L.) Cultivars by Improving Nodulation, Root System Architecture, and Soil Biological Properties. Silicon, 14(10), pp. 5333–5345. https://doi.org/10.1007/s12633-021-01273-3
Shao, S., Chen, M., Liu, W., Hu, X., Wang, E.-T., Yu, S. and Li, Y., 2020. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Systematic and Applied Microbiology, 43(5), p. 126101. https://doi.org/10.1016/j.syapm.2020.126101
Sharma, S., Mushtaq, M., Sudhakaran, S., Thakral, V., Raturi, G., Bansal, R., Kumar, V., Vats, S., Shivaraj, S.M. and Deshmukh, R., 2023. Silicon Uptake, Transport, and Accumulation in Plants. In: S. Padney, D.K. Tripathi, V.P. Singh, S. Sharma and D.K. Chauhan, eds. Beneficial Chemical Elements of Plants: Recent Developments and Future Prospects. Wiley Online Library. pp. 205–226. https://doi.org/10.1002/9781119691419.ch9
Souri, Z., Khanna, K., Karimi, N. and Ahmad, P., 2021. Silicon and Plants: Current Knowledge and Future Prospects. Journal of Plant Growth Regulation, 40, pp. 906–925. https://doi.org/10.1007/s00344-020-10172-7
Tillman, B.L. and Stalker, H.T., 2010. Peanut. In: J. Vollmann and I. Rajcan, eds. Oil crops. Springer. pp. 287–315. https://doi.org/10.1007/978-0-387-77594-4_9
Toomet, O., 2017. Nutritional chemistry of the peanut (Arachis hupogaea). Critical Reviews in Food Science and Nutrition. 58(17), pp. 3042-3053. https://doi.org/10.1080/10408398.2017.1339015
Zhang, J., Yun, G., Feng, G.U.O., Li, X.-G. and Wan, S., 2020. Research progress on the mechanism of improving peanut yield by single-seed precision sowing. Journal of Integrative Agriculture, 19(8), pp. 1919–1927. https://doi.org/10.1016/S2095-3119(19)62763-2
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.62324
DOI: http://dx.doi.org/10.56369/tsaes.6232
Copyright (c) 2025 Luis Tarquino Llenera-Ramos, Juan José Reyes-Pérez, Erika Vanessa Castro Klinger, Juan Antonio Torres-Rodriguez, Sergio Rodríguez-Rodríguez, Maria de los Angeles Sariñana-Navarrete

This work is licensed under a Creative Commons Attribution 4.0 International License.