In vitro ruminal fermentation of a diet for lambs by varying origin and dose of oregano essential oil

Alvin Gustavo Carrillo Hurtado, Luis Alberto Miranda Romero, Noé Galindo Dorantes, Jorge Ramsy Kawas Garza, Gerardo Mendez Zamora, Daniela Saraí Rico Costilla, Yareellys Ramos Zayas, Maximino Huerta Bravo

Abstract


Background: Oregano essential oil (OEO) is a natural alternative to conventional additives. OEO can improve efficiency in ruminant diets, but the magnitude of the impact may vary according to the origin and dose applied. Objective: To analyze the in vitro ruminal fermentation pattern by changing the origin and dose of OEO. Methodology: The treatments had a 2*5+1 factorial arrangement, the factors were the origin: Mexican (MOEO) and European (EOEO), and the dose: at levels of 70, 140, 280, 560, and 1120 ppm of the wet base substrate plus a control without addition of OEO. Contrasts and orthogonal polynomials were used to compare means. The variables quantified were: fast (FRF), medium (FMF) and slow fermentation fractions, as well as their total fermentable fraction (FFT); in vitro degradability of dry matter at 24 h (IVDMD24) and 72 h (IVDMD72); the in vitro degradability of organic matter at 72 h (IVOMD72); lag phase (L); fermentation rate (S); maximum volume (mV); VFA and CH4 production; acetic/propionic ratio (A/P); global warming potential index (GWPI) and environmental impact indicator (EII). Results. MOEO linearly affects FMF FTF, and Vm as the dose increases, while AEOE is a quadratic trend hence, MOEO is different from the control. IVOMD72 tends to decrease as the dose of the two OEOs increases; increasing the inclusion of MOEO decreases A/P linearly; EOEO and MOEO are different from the control in VFA production. There were no effects on environmental impact variables. Implications. The components of MOEO have greater antimicrobial capacity against rumen bacteria than AEOE, MOEO could act similarly to the impact of feed additives such as ionophores in reducing A/P. Conclusion. MOEO can better modulate ruminal fermentation than EOEO but decreases digestion and total gas production more.

Keywords


Oregano essential oil; rumen fermentation; sheep.

Full Text:

PDF

References


Albores-Moreno, S., Alayon-Gamboa, J. A., Miranda-Romero, L. A., Jiménez-Ferrer, G., Ku-Vera, J. C. and Vargas-Villamil, L., 2018. Nutritional composition, in vitro degradation and potential fermentation of tree species grazed by ruminants in secondary vegetation (Acahual) of deciduous forest: Journal of Animal & Plant Sciences, 28(5), pp.1263-1275. http://www.thejaps.org.pk/docs/v-28-05/06.pdf

Baser, K. H. C., 2002. The turkish origanum species. In: S.E. Kintzios, ed. Oregano. The Genera Origanum and Lippia, London:CRC Press. p.109.

Benchaar, C., Calsamiglia, S., Chaves, A. V., Fraser, G. R., Colombatto, D., McAllister, T. A. and Beauchemin, K. A., 2008. A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1-4), pp. 209-228. http://dx.doi.org/10.1016/j.anifeedsci.2007.04.014

Benchaar, C., Chaves, A. V., Fraser, G. R., Beauchemin, K. A. and McAllister, T. A., 2007. Effects of essential oils and their components on in vitro rumen microbial fermentation. Canadian Journal of Animal Science, 87(3), pp. 413-419. http://dx.doi.org/10.4141/CJAS07012

Berra, G., Finster, L. and Valtorta, S. E., 2009. Una técnica sencilla para la medición de emisiones de metano entérico en vacas. Ciencias Veterinarias, 8, pp. 49-56. http://dx.doi.org/10.14409/favecv.v8i1.1479

Bhatta, R., Saravanan, M., Baruah, L., Sampath, K. T. and Prasad, C. S., 2013. In vitro fermentation profile and methane reduction in ruminal cultures containing secondary plant compounds. Journal of Applied Microbiologyl, 115(2), pp. 455-465. https://doi.org/10.1111/jam.12238

Blaxter, K. L. and Wainman, F. W., 1966. The fasting metabolism of cattle. British Journal of Nutrition, 20(1), pp. 103-111. http://dx.doi.org/10.1079/BJN19660012

Blümmel, M. and Lebzien, P., 2001. Predicting ruminal microbial efficiencies of dairy rations by in vitro techniques. Livestock Production Science, 68(2), pp. 107–117. http://dx.doi.org/10.1016/S0301-6226(00)00241-4

Brockman, R. P., 2005. Glucose and short-chain fatty acid metabolism. In: Quantitative Aspects of Ruminant Digestion and Metabolism. Wallingford UK: CABI Publishing. pp. 291-310. http://dx.doi.org/10.1079/9780851998145.0291

Busquet, M., Calsamiglia, S., Ferret, A. and Kamel, C., 2006. Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, 89(2), pp. 761-771. http://dx.doi.org/10.3168/jds.S0022-0302(06)72137-3

Busquet, M., Calsamiglia, S., Ferret, A., Cardozo, P. W. and Kamel, C., 2005. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. Journal of Dairy Science, 88(7), pp. 2508-2516. http://dx.doi.org/10.3168/jds.S0022-0302(05)72928-3

Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L. and Ferret, A., 2007. Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science. 90: pp. 2580-2595. http://dx.doi.org/10.3168/jds.2006-644

Calvo-Irabien, L. M., 2018. Native Mexican aromatic flora and essential oils: Current research status, gaps in knowledge and agro-industrial potential. Industrial Crops and Products, 111, pp. 807-822. http://dx.doi.org/10.1016/j.indcrop.2017.11.044

Cardozo, P. W., Calsamiglia, S., Ferret, A. and Kamel, C., 2005. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. Journal of Animal Science, 83(11), pp. 2572-2579. http://dx.doi.org/10.2527/2005.83112572x

Castañeda-Correa, A., Corral-Luna, A., Hume, M. E., Anderson, R. C., Ruiz-Barrera, O., Castillo-Castillo, Y., Rodriguez-Almeida, F., Salinas-Chavira, J. and Arzola-Alvarez, C., 2019. Effects of thymol and carvacrol, alone or in combination, on fermentation and microbial diversity during in vitro culture of bovine rumen microbes. Journal of Environmental Science and Health, Part B, 54(3), pp. 170-175. http://dx.doi.org/10.1080/03601234.2018.1536580

Castillejos, L., Calsamiglia, S. and Ferret, A., 2006. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Journal of Dairy Science, 89(7), pp. 2649-2658. http://dx.doi.org/10.3168/jds.S0022-0302(06)72341-4

Cobellis, G., Petrozzi, A., Forte, C., Acuti, G., Orrù, M., Marcotullio, M. C., Aquino, A., Nicolini, A., Mazza V. and Trabalza-Marinucci, M., 2015. Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability, 7(9), pp. 12856-12869. http://dx.doi.org/10.3390/su70912856

Cobellis, G., Trabalza-Marinucci, M., Marcotullio, M. C. and Yu, Z., 2016. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Animal Feed Science and Technology, 215, pp. 25-36. http://dx.doi.org/10.1016/j.anifeedsci.2016.02.008

Danielsson, R., Ramin, M., Bertilsson, J., Lund, P. and Huhtanen, P., 2017. Evaluation of a gas in vitro system for predicting methane production in vivo. Journal of Dairy science, 100(11), pp. 8881-8894. http://dx.doi.org/10.3168/jds.2017-12675

Davidson, P. M. and Naidu, A. S., 2000. Phyto-phenols. Natural Food Antimicrobial Systems, 226, pp. 284-287.

Dumortier, P., Aubinet, M., Beckers, Y., Chopin, H., Debacq, A., de la Motte, L. G., Jérôme., E. Wilmus., F. and Heinesch, B., 2017. Methane balance of an intensively grazed pasture and estimation of the enteric methane emissions from cattle. Agricultural and Forest Meteorology, 232, pp. 527-535. http://dx.doi.org/10.1016/j.agrformet.2016.09.010

Ellis, J.L., Bannink, A., France, J., Kebreab, E. and Dijkstra, J., 2010. Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Glob. Global Change Biology, 16, pp. 3246–3256. http://dx.doi.org/10.1111/j.1365-2486.2010.02188.x

Elmasry, A. M. A., Mendoza, G. D., Miranda, R. L. A., Vazquez, G., Salem, A. Z. M. and Hernandez, P. A., 2016. Effects of types and doses of yeast on gas production and in vitro digestibility of diets containing maize (Zea mays) and lucerne (Medicago sativa) or oat hay. South African Journal of Animal Science 46(4), pp. 391–397. http://dx.doi.org/10.4314/sajas.v46i4.7

Eugène, M., Archimède, H. and Sauvant, D., 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livestock Production Science, 85(1), pp. 81-97. http://dx.doi.org/10.1016/S0301-6226(03)00117-9

Fernández-Mayer, A., 2001. Efecto de la sincronización de energía-proteína sobre la performance animal. EEA INTA Bordenave, pp. 7-13.

Food and Agriculture Organization of the United Nations (FAO)., 2010. Greenhouse gas emissions from the dairy sector: a life cycle assessment. A report prepared by Food and Agriculture Organization of the United Nations, Animal Production and Health division. Rome:FAO. https://www.fao.org/4/k7930e/k7930e00.pdf

Ghazi, S., Amjadian, T. and Norouzi, S., 2015. Single and combined effects of vitamin C and oregano essential oil in diet, on growth performance, and blood parameters of broiler chicks reared under heat stress condition. International Journal of Biometeorology, 59(8), pp. 1019-1024. http://dx.doi.org/10.1007/s00484-014-0915-4

Guo, Y. Q., Liu, J. X., Lu, Y., Zhu, W. Y., Denman, S. E. and McSweeney, C. S., 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro?organisms. Letters in Applied Microbiology, 47(5), pp. 421-426. https://doi.org/10.22358/jafs/74464/2007

Hartmann, T., 2007. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry, 68(22-24), pp. 2831-2846. http://dx.doi.org/10.1016/j.phytochem.2007.09.017

Jiménez-Santiago, Á., Jiménez-Ferrer, G., Alayón-Gamboa, A., Pérez-Luna, E. D. J., Piñeiro-Vázquez, A. T., Albores-Moreno, S., Pérez-Escobar, M. G. and Castro-Chan, R., 2019. Fermentación ruminal y producción de metano usando la técnica de gas in vitro en forrajes de un sistema silvopastoril de ovinos de Chiapas, México. Revista Mexicana de Ciencias Pecuarias, 10(2), pp. 298-314. https://doi.org/10.22319/rmcp.v10i2.4529

Jouany, J.P., 1991. Rumen Microbial Metabolism and Ruminant Digestion, Paris:INRA.

Macheboeuf, D., Morgavi, D.P., Papon, Y., Mousset, J.L. and Arturo-Schaan, M., 2008. Dose–response effects of essential oils on in vitro fermentation activity of the rumenmicrobial population. Animal Feed Science and Technology. 145, pp. 335–350. https://doi.org/10.1016/j.anifeedsci.2007.05.044

Martínez-Hernández, B. E., Salvador-Flores, O. and Miranda-Romero, L. A., 2019. Indicador de calentamiento global a partir de la fermentación ruminal de alimentos con diferentes niveles de energía y proteína. Pastos y Forrajes, 42(4), pp. 285-289.

Mata-González, R. and Meléndez-González, R., 2005. Growth characteristics of Mexican oregano (Lippia berlandieri Schauer) under salt stress. The Southwestern Naturalist, 50, pp. 1-6. http://dx.doi.org/10.1894/0038-4909(2005)050%3C0001:GCOMOL%3E2.0.CO;2

McGuffey, R. K., Richardson, L. F. and Wilkinson, J. I. D., 2001. Ionophores for dairy cattle: current status and future outlook. Journal of Dairy Science, 84, pp. 194-203. http://dx.doi.org/10.3168/jds.S0022-0302(01)70218-4

Méndez Zamora, G., Durán Meléndez, L. A., Hume, M. E. and Silva Vázquez, R., 2017. Performance, blood parameters, and carcass yield of broiler chickens supplemented with Mexican oregano oil. Revista Brasileira de Zootecnia, 46(6), pp. 515-520. https://doi.org/10.1590/S1806-92902017000600006

Méndez-Zamora, G., Durán-Meléndez, L. A., Aquino-López, J. L., Santellano-Estrada, E. and Silva-Vázquez, R., 2016. Efecto del aceite de orégano (Poliomintha longiflora Gray) sobre la productividad y calidad de carne de conejos. Ecosistemas y Recursos Agropecuarios, 3(8), pp. 259-265.

Menke, K. H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, pp. 7–55.

Miranda, R. L. A., Vazquez M. P., Amendola, M, R., Sandoval, G. L. and González, O. R., 2015. Cuantificación de las fracciones fermentables de alfalfa y tuna por la técnica de producción de gas, In: Asociación Latinoamericana de Producción Animal (ed). XXIV Congreso de la asociación Latinoamericana de producción animal y XL Congreso de la sociedad chilena de producción animal. Puerto Varas, Chile, p. 575.

Mohammed, N., Ajisaka, N., Lila, Z. A., Hara, K., Mikuni, K., Hara, K., Kanda, S. and Itabashi, H., 2004. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. Journal of Animal Science, 82(6), pp. 1839-1846. https://doi.org/10.2527/2004.8261839x

Monforte-Briceño, G. E., Sandoval-Castro, C. A., Ramírez-Avilés, L. and Leal, C. M. C., 2005. Defaunating capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production. Animal Feed Science and Technology, 123, pp. 313-327. http://dx.doi.org/10.1016/j.anifeedsci.2005.04.016

Muñoz-Cuautle, A., Ortega-Cerrilla, M. E., Herrera-Haro, J. G., Ramírez-Bribiesca, J. E. and Zetina-Córdoba, P., 2022. Fermentación ruminal y producción de metano in vitro de dietas para ovinos con inclusión de taninos condensados y niveles crecientes de aceite de orégano (Lippia graveolens). Tropical and Subtropical Agroecosystems, 25, pp. 081. http://dx.doi.org/10.56369/tsaes.4245

NASEM (National Academies of Sciences, Engineering, and Medicine)., 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. National Academies Press, Washington, D.C.

NOM NOM-062-ZOO-1999., 1999. Norma Oficial Mexicana, especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio. Accessed March 2021. http://www.economia-noms.gob.mx/noms/consultasAction.do

Patra, A. K., 2011. Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian Journal of Animal and Veterinary Advances, 6(5), pp. 416-428. http://dx.doi.org/10.3923/ajava.2011.416.428

Patra, A. K. and Yu, Z., 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78(12), pp. 4271-4280. http://dx.doi.org/10.1128/AEM.00309-12

Patra, A., Park, T., Kim, M. and Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8(1), pp. 1-18. http://dx.doi.org/10.1186/s40104-017-0145-9

Peng, Q. Y., Li, J. D., Li, Z., Duan, Z. Y. and Wu, Y. P., 2016. Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens. Animal Feed Science and Technology, 214, pp. 148-153. http://dx.doi.org/10.1016/j.anifeedsci.2016.02.010

Piñon, M. I., Alarcon-Rojo, A. D., Renteria, A. L., Mendez, G. and Janacua-Vidales, H., 2015. Reduction of microorganisms in marinated poultry breast using oregano essential oil and power ultrasound. Acta Alimentaria, 44(4), pp. 527-533. http://dx.doi.org/10.1556/066.2015.44.0024

Priest, F. G., 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews, 41(3), pp. 711-753. http://dx.doi.org/10.1128/br.41.3.711-753.1977

Reyer, H., Zentek, J., Ma?nner, K., Youssef, I. M., Aumiller, T., Weghuber, J. and Mueller, A. S., 2017. Possible molecular mechanisms by which an essential oil blend from star anise, rosemary, thyme, and oregano and saponins increase the performance and ileal protein digestibility of growing broilers. Journal of agricultural and food chemistry, 65(32), pp. 6821-6830. http://dx.doi.org/10.1021/acs.jafc.7b01925

Righi, F., Simoni, M., Foskolos, A., Beretti, V., Sabbioni, A. and Quarantelli, A., 2017. In vitro ruminal dry matter and neutral detergent fibre digestibility of common feedstuffs as affected by the addition of essential oils and their active compounds. Journal of Animal and Feed Sciences, 26(3), pp. 204-212. http://dx.doi.org/10.22358/jafs/76754/2017

SAS., 2021. Institute Inc., SAS/STAT. Software, ver. 9.4. SAS, Cary, NC, USA.

Schofield, P. and Pell, A. N., 1995. Measurement and kinetic analysis of the neutral detergent-soluble carbohydrate fraction of legumes and grasses. Journal of Animal Science. 73(11), pp. 3455–3463. http://dx.doi.org/10.2527/1995.73113455x

Silva-Vázquez, R., Duran-Meléndez, L. A., Hernández-Martínez, C. A., Gutiérrez-Soto, J. G., Hume, M. E. and Méndez-Zamora, G., 2018. Effects of two sources of Mexican oregano oil on performance, blood profile, carcass variables, and meat of broilers. Revista Brasileira de Zootecnia, 47, pp. e20170198. http://dx.doi.org/10.1590/rbz4720170198

Sivropoulou, A., E. Papanikolaou, C. Nikolaou, S. Kokkini, T. Lanaras, and M. Arsenakis., 1996. Antimicrobial and cytotoxic activities of Origanum essential oils. Journal of Agricultural and Food Chemistry. 44, pp1202–1205. http://dx.doi.org/10.1021/jf950540t

Tekippe, J. A., Hristov, A. N., Heyler, K. S., Cassidy, T. W., Zheljazkov, V. D., Ferreira, J. F. S., Karnati, S. K. and Varga, G. A., 2011. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. Journal of Dairy Science, 94(10), pp. 5065-5079. http://dx.doi.org/10.3168/jds.2010-4095

Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology. 48(3–4), pp. 185–197. http://dx.doi.org/10.1016/0377-8401(94)90171-6

Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G. and Bisignano, G., 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6), pp. 2474-2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005

Valenzuela-Grijalva, N. V., Pinelli-Saavedra, A., Muhlia-Almazan, A., Domínguez-Díaz, D. and González-Ríos, H., 2017. Dietary inclusion effects of phytochemicals as growth promoters in animal production. Journal of Animal Science and Technology, 59(1), pp. 1-17. https://doi.org/10.1186/s40781-017-0133-94o

Van Soest, P. J., 1994. Nutritional ecology of the ruminant. Cornell University Press. Ithaca, NY.

Wang, Z., Li, X., Zhang, L., Wu, J., Zhao, S. and Jiao, T., 2022. Effect of oregano oil and Cobalt lactate on sheep in vitro digestibility, fermentation characteristics and rumen microbial community. Animals, 12(1), pp. 118. https://doi.org/10.3390/ani12010118

Wolin, M. J., Miller, T. L. and Stewart, C. S., 1997. Microbe-microbe interactions. In: The rumen microbial ecosystem (pp. 467-491). Springer, Dordrecht.

Xu, J., Zhou, F., Ji, B. P., Pei, R. S. and Xu, N., 2008. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3), pp. 174-179. https://doi.org/10.1111/j.1472-765X.2008.02407.x

Yan, T., Mayne, C. S., Gordon, F. G., Porter, M. G., Agnew, R. E., Patterson, D. C., Ferris, C. P. and Kilpatrick, D. J., 2010. Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. Journal of Dairy Science, 93(6), pp. 2630-2638. https://doi.org/10.3168/jds.2009-2929

Zhong, R. Z.; Fang, Y., Sun, H. X., Wang, M. and Zhou, D. W., 2016. Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in vitro gas production technique. Journal of Integrative Agriculture, 15(2), pp. 414-423. https://doi.org/10.1016/S2095-3119(15)61046-5

Zhou, R., Wu, J., Lang, X., Liu, L., Casper, D. P., Wang, C., Zhang, L. and Wei, S., 2020. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. Journal of Dairy Science, 103(3), pp. 2303-2314. https://doi.org/10.3168/jds.2019-17234




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.61984

DOI: http://dx.doi.org/10.56369/tsaes.6198



Copyright (c) 2025 Noé Galindo Dorantes, Alvin Gustavo Carrillo Hurtado

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.