COMPARISON OF METHODS FOR MEASURING LEAF CHARACTERISTICS AND EVALUATION OF CHLOROPHYLL CONTENT IN TEN ROCOTO PEPPER ACCESSIONS FROM THE INIA, PERU, GERMPLASM BANK

Hans Dadther-Huaman, Andrea Delgado-Lazo, Gonzalo A. Pacheco-Lizarraga

Abstract


Background: The rocoto pepper (Capsicum pubescens), native to the Andes, is a species of great importance in Peru, both in agriculture and gastronomy, especially in the department of Arequipa. Objective: To compare the accuracy and relationship between the methods of measuring leaf area, length, width and perimeter using ImageJ software and the portable meter CI-202, as well as to evaluate the chlorophyll content with the SPAD 502 Plus in ten accessions of rocoto pepper. Methodology: Tests of normality and homogeneity of variances were carried out for the leaf and chlorophyll variables. Then, ANOVA and Tukey's test (p < 0.05) were applied to compare accessions, in addition to a Pearson correlation analysis. To compare the leaf area measurements with ImageJ and CI-202 with the product of leaf length and leaf width, a linear regression model was used, in the same way leaf area and chlorophyll content were compared. Results: Accessions PER1002862 and PER1002844 showed the highest values in all parameters, while PER1002960 and PER1002949 had the lowest, except for chlorophyll, where PER1002821 recorded the lowest value. The CI-202 portable meter obtained a higher coefficient of determination (R2=0.9919) than ImageJ (R2=0.984) when comparing leaf area with the product of length and width. Implications: The study evaluates the accuracy of ImageJ and CI-202 in leaf measurement and its relationship with chlorophyll content in C. pubescens. Conclusions: Both methods, ImageJ and CI-202, were effective for leaf measurement; However, the CI-202 was more efficient due to its speed in data collection and processing. Chlorophyll content varied among accessions, without relation to leaf area.

Keywords


germplasm; rocoto pepper; accessions; biodiversity; Arequipa.

Full Text:

PDF

References


Broadhead, J.S., Muxworthy, A.R., Ong, C.K. and Black, C.R., 2003. Comparison of methods for determining leaf area in tree rows. Agriculturl and Forest Meteorology, 115, pp, 151-161. https://doi.org/10.1016/S0168-1923(02)00212-5

Cabezas-Gutiérrez, M., Peña, F., Duarte, H.W., Colorado, J.F. and Lora S., R., 2009. Un modelo para la estimación del área foliar en tres especies forestales de forma no destructiva. Revista U.D.C.A Actualidad & Divulgación Científica, 12(1), pp, 121-130. https://doi.org/10.31910/rudca.v12.n1.2009.648

Campostrini, E. and Yamanishi, O.K., 2001. Estimativa da área foliar do mamoeiro utilizando o comprimento da nervadura central. Scientia Agrícola (Brasil). 58(1), pp, 39-42. https://doi.org/10.1590/S0103-90162001000100007

Castro, A., Dávila, C., Laura, W., Cubas, F., Ávalos, G., López O., C., Villena, D., Valdez, M., Urbiola, J., Trebejo, I., Menis, L. and Marín, D., 2021. Climas del Perú: mapa de clasificación climática nacional. Lima, SENAMHI. https://www.senamhi.gob.pe/load/file/01404SENA-4.pdf

Cittadini, E.D. and Peri, P.L., 2006. Estimation of leaf area in sweet cherry using a non-destructive method. Revista de Investigaciones Agropecuarias, 35(1), pp, 143-150. https://www.redalyc.org/pdf/864/86435110.pdf

De Laffitte A., M.V.S., Bordão, D.M., Gonçalves, A.B. de M. and Da Costa, F.F., 2018. A utilização do software ImageJ no processamento de imagens tomográficas. Revista Saber Digital, 11(2), pp, 50-59. https://revistas.faa.edu.br/SaberDigital/article/view/622

De Sousa, M.H. and Da Silva, N.N., 2000. Comparação de softwares para análise de dados de levantamentos complexos. Revista de Saúde Pública, 34(6), pp, 646-653. https://doi.org/10.1590/S0034-89102000000600013

Enciso, B.E. and Gómez, C., 2004. Comparación de las respuestas de cuatro cultivares de mora (Rubus sp.) a las variaciones del factor luz. Agronomía Colombiana, 22(1), pp, 46-52. https://www.redalyc.org/articulo.oa?id=180317823007

García G., C.A., Ramírez L., S.B. and Solano M., L.O., 2022. Caracterización floral del género Capsicum spp, en el Ecuador. Conference Proceedings UTMACH V, 6(1), pp, 26-36. http://dx.doi.org/10.48190/cp.v6n1a3

García-Serquén, A., Amasifuen, C., Valdez, I., Quispe, F., Medina, C., Hinostroza, L., Vilchez, D., García, P., Pacheco, G. and Medina, J., 2022. Catálogo de Rocoto del Banco de Germoplasma del INIA. Lima, Instituto Nacional de Innovación Agraria. https://hdl.handle.net/20.500.12955/1672

Gonçalves, M.P., Ribeiro, R.V. and Amorim, L., 2022. Non-destructive models for estimating leaf area of guava cultivars. Bragantia, 81, pp, 1-10. https://doi.org/10.1590/1678-4499.20210342

Hernández-Amasifuen, A.D., Pineda-Lázaro, A.J. and Díaz-Pillasca, H.B., 2022. In vitro anther culture of rocoto (Capsicum pubescens Ruiz & Pav.). Idesia (Arica), 40(1), pp, 115-121. https://dx.doi.org/10.4067/S0718-34292022000100115

Hidema, J., Makino, A., Kurita, Y., Mae, T. and Ojima, K., 1992. Changes in the Levels of Chlorophyll and Light-Harvesting Chlorophyll a/b Protein of PS II in Rice Leaves Aged under Different Irradiances from Full Expansion through Senescence. Plant and Cell Physiology, 33(8), pp, 1209-1214. https://doi.org/10.1093/oxfordjournals.pcp.a078375

Hurtado, E., González-Vallejos, F., Roper, C., Bastías, E. and Mazuela, P., 2017. Propuesta para la determinación del contenido de clorofila en hojas de tomate. Idesia (Arica), 35(4), pp, 129-130. http://dx.doi.org/10.4067/S0718-34292017000400129

Jaime-Guerrero, M., Álvarez-Herrera, J.G. and Camacho-Tamayo, J.H., 2023. Modelo no destructivo para estimar el área foliar individual mediante parámetros alométricos en gulupa (Passiflora edulis fo. edulis). Revista U.D.C.A Actualidad & Divulgación Científica, 26(2), pp, e2356. https://doi.org/10.31910/rudca.v26.n2.2023.2356

Kolukisaoglu, Ü. and Thurow, K., 2010. Future and frontiers of automated screening in plant sciences. Plant Science, 178(6), pp, 476-484. https://doi.org/10.1016/j.plantsci.2010.03.006

Kucharik, CH.J., Norman, J.M. and Gower, S.T., 1998. Measurements of branch area and adjusting leaf area index to indirect measurements. Agric. Forest Meteorol. 91, pp, 69-88. https://doi.org/10.1016/S0168-1923(98)00064-1

Ling, Q., Huang, W. and Jarvis, P., 2011. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis research, 107, pp, 209-214. https://doi.org/10.1007/s11120-010-9606-0

Lucena, L.R.R., Leite, M.L.M.V., Cruz, M.G. and De Sá Júnior, E.H., 2018. Estimativa da área foliar em Urochloa mosambicensis por dimensões foliares e imagens digitais. Archivos de Zootecnia, 67(259), pp, 408-413. https://doi.org/10.21071/az.v67i259.3798

Padilla, F.M., Peña-Fleitas, M.T., Gallardo, M. and Thompson, R.B., 2014. Threshold values of canopy reflectance indices and chlorophyll meter readings for optimal nitrogen nutrition of tomato. Annals of Applied Biology, 166 (2), pp, 271-285. https://doi.org/10.1111/aab.12181

Piekielek, W.P. and Fox, R.H., 1992. Use of a chlorophyll meter to predict nitrogen requirements for maize. Agronomy Journal, 84(1), pp, 59-65. https://doi.org/10.2134/agronj1992.00021962008400010013x

Rincón G., N., Olarte Q., M.A. and Pérez N., J.C., 2012. Determinación del Área Foliar en Fotografías Tomadas con una Cámara Web, un Teléfono Celular o una Cámara Semiprofesional. Revista Facultad Nacional de Agronomía Medellín, 65 (1), pp, 6399-6405. https://www.redalyc.org/articulo.oa?id=179924340010

Ríos V., C., 2012. Estadística y diseño de experimentos. Lima, Universitaria de la Universidad Nacional de Ingeniería. https://ww2.fondoeditorial.uni.edu.pe/3cera_edi_6_Libro_Estadistica_y_diseno_de_experimentos.pdf

Rodríguez M., D.L.N., Alcántar G., G., Aguilar S, A., Etchevers B., J.D. and Santizó R., J. A., 1998. Estimación de la concentración de nitrógeno y clorofila en tomate mediante un medidor portátil de clorofila. Terra, 16 (2), pp, 135-141. https://www.redalyc.org/pdf/573/57316204.pdf

Scott, G., 2011. Plants, people, and the conservation of biodiversity of potatoes in Peru. Natureza & Conservação, 9(1), pp, 21-38. https://dx.doi.org/10.4322/natcon.2011.003

Silva, J.S. e, de Melo F.R., Ferreira, C.R., de Oliveira, S.D., and De Moraes, M.J., 2024. Identificação da área foliar do feijoeiro por meio de técnicas de processamento digital de imagens. Observatório de la Economía Latinoamericana, 22(12), pp, 1-12. https://doi.org/10.55905/oelv22n12-067

Sonnentag, O., Talbot, J., Chen, J.M. and Roulet, N.T., 2008. Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland. Agricultural and Forest Meteorology, 144, pp, 200-212. https://doi.org/10.1016/j.agrformet.2007.03.001

Tay, A.C. and Ling, J.Z.L., 2020. Estimation of individual leaf area by leaf dimension using a linear regression for various tropical plant species. IOP Conference Series: Materials Science and Engineering, 943(1), pp, 1-5. https://iopscience.iop.org/article/10.1088/1757-899X/943/1/012066

Zárate-Salazar, J.R., Santos, M.N., Santos B., J.N. and Isla L., F., 2018. Comparação de softwares de análise de imagem para a determinação da área foliar. Revista Brasileira de Meio Ambiente, 3(1), pp, 24-32. https://revistabrasileirademeioambiente.com/index.php/RVBMA/article/view/44




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.61974

DOI: http://dx.doi.org/10.56369/tsaes.6197



Copyright (c) 2025 Hans Dadther-Huaman, Gonzalo Antonio Pacheco-Lizarraga

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.