VIABILITY AND MORPHOMETRY IN Agave SEEDS AS AN INITIAL STUDY FOR SUSTAINABLE MANAGEMENT AND GENETIC PRESERVATION

Jorge Luis Lechuga-Campuzano, Amaury Martín Arzate-Fernández, Hilda Guadalupe García-Núñez, María Dolores Mariezcurrena-Berasaín, Jesús Ignacio Reyes Díaz

Abstract


Background: The Tehuacán-Cuicatlán Valley (TCV), located at the crossroads of the Nearctic and Neotropical biogeographic regions, is a critical hotspot for biodiversity, particularly for the genus Agave. This region plays a vital role in preserving various species, with Agave being one of the most important genus due to its ecological and economic significance. Methodology: Agave angustifolia, A. cupreata, A. marmorata, A. potatorum, and A. salmiana seed collection was conducted in the TCV, followed by dehydration and storage under controlled conditions. Seed viability was assessed using the tetrazolium chloride (TTC) test. The percentage of viable embryos ( %V) was calculated. Seed morphometry was analyzed by measuring length, width, weight, and volume. Results: Significant interspecific variability in seed viability was found. A. marmorata exhibited the highest viability across all time points, reaching 78.49 % at 72 hours, indicating robust physiological mechanisms. In contrast, A. potatorum showed the lowest viability, with a maximum of 57.99 %, likely due to genetic limitations or suboptimal conditions during seed development. Morphometric analysis also revealed significant differences among the tested species, with A. angustifolia seeds being the largest and A. marmorata the smallest. Implications: This study underscores the importance of understanding seed viability and morphometric traits in Agave species. These factors are crucial for the conservation and sustainable management of both wild and cultivated populations. The variability in seed viability and morphometric traits has significant implications for conservation efforts, as it can influence regeneration strategies and breeding programs aimed at improving crop yields or conserving native species. Conclusion: A. marmorata showed the highest seed viability, indicating robust physiological adaptations, while A. potatorum had the lowest viability and a high percentage of seedless embryos, suggesting potential reproductive challenges. Seed morphometric analysis revealed differences that could affect dispersal and germination success. In the broader context of biodiversity conservation in the Tehuacán-Cuicatlán Valley, these results offer valuable insights into the genetic and physiological diversity of Agave, guiding future conservation efforts.

Keywords


Agave seed viability, Morphometric analysis, Ex situ conservation, Tetrazolium test

Full Text:

PDF

References


Álvarez-Ríos, G.D., Pacheco-Torres, F., Figueredo-Urbina, C.J. and Casas, A., 2020. Management, morphological and genetic diversity of domesticated agaves in Michoacán, México. Journal of Ethnobiology and Ethnomedicine, 16(1), p.3. https://doi.org/10.1186/s13002-020-0353-9

Colunga-García, P. and Zizumbo-Villarreal, D., 2007. Tequila and other Agave spirits from west-central Mexico: current germplasm diversity, conservation and origin. Biodiversity and Conservation, 16(6), pp.1653–1667. https://doi.org/10.1007/s10531-006-9031-z

Copeland, L.O., S. and McDonald, M.B., 2002. Principles of seed science and technology. Annals of Botany, 89(6), pp.798–798. https://doi.org/10.1093/aob/mcf127

Cuéllar-Martínez, M., Galindo-González, J. and Andrade-Torres, A., 2024. Germination of Agave obscura seeds: effects of storage time and crossing systems. Plant Ecology, 225(3), pp.189–199. https://doi.org/10.1007/s11258-023-01389-z

Dalziell, E.L. and Tomlinson, S., 2017. Reduced metabolic rate indicates declining viability in seed collections: an experimental proof-of-concept. Conservation Physiology, [online] 5(1). https://doi.org/10.1093/conphys/cox058

Dávila, P., Arizmendi, M.D.C., Valiente?Banuet, A., Villaseñor, J.L., Casas, A. and Lira, R., 2002. Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodiversity and Conservation, 11(3), pp.421–442. https://doi.org/10.1023/A:1014888822920

Delgado-Lemus, A., Torres, I., Blancas, J. and Casas, A., 2014. Vulnerability and risk management of Agave species in the Tehuacán Valley, México. Journal of Ethnobiology and Ethnomedicine, 10(1), p.53. https://doi.org/10.1186/1746-4269-10-53

Eguiarte, L.E., Aguirre-Planter, E., Aguirre, X., Colín, R., González, A., Rocha, M., Scheinvar, E., Trejo, L. and Souza, V., 2013. From Isozymes to Genomics: Population Genetics and Conservation of Agave in México. The Botanical Review, 79(4), pp.483–506. https://doi.org/10.1007/s12229-013-9123-x

Escobar-Guzmán, R.E., Hernández, F.Z., Vega, K.G. and Simpson, J., 2008. Seed production and gametophyte formation in Agave tequilana and Agave americana. Botany, 86(11), pp.1343–1353. https://doi.org/10.1139/B08-099

Félix-Valdez, L.I., Vargas-Ponce, O., Cabrera-Toledo, D., Casas, A., Cibrian-Jaramillo, A. and De La Cruz-Larios, L., 2016. Effects of traditional management for mescal production on the diversity and genetic structure of Agave potatorum (Asparagaceae) in central Mexico. Genetic Resources and Crop Evolution, 63(7), pp.1255–1271. https://doi.org/10.1007/s10722-015-0315-6

Finch?Savage, W.E. and Leubner?Metzger, G., 2006. Seed dormancy and the control of germination. New Phytologist, 171(3), pp.501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x

Gil-Vega, K., Díaz, C., Nava-Cedillo, A. and Simpson, J., 2006. AFLP analysis of Agave tequilana varieties. Plant Science, 170(4), pp.904–909. https://doi.org/10.1016/j.plantsci.2005.12.014

Hernández-Castro, E., López-Sandoval, Y.Y., Escobar-Álvarez, J.L. and Ramírez-Reynoso, O., 2021. Análisis morfométrico de semilla y desarrollo de plántulas de maguey sacatoro (Agave angustifolia Haw.). Ecosistemas y Recursos Agropecuarios, 8(3), pp.e2964. https://doi.org/10.19136/era.a8n3.2964

Huerta-Lovera, M., Peña-Valdivia, C.B., García-Esteva, A., Kohashi-Shibata, J., Campos-García, H. and Aguirre-Rivera, J.R., 2018. Maguey (Agave salmiana) infructescence morphology and its relationship to yield components. Genetic Resources and Crop Evolution, 65(6), pp.1649–1661. https://doi.org/10.1007/s10722-018-0641-6

ISTA. 2016. International Rules for Seed Testing, 2016(1), pp.1–384. https://doi.org/10.15258/istarules.2016.F

Juárez López, C.R., Chiñas Castillo, F., Alavéz Ramírez, R. and Caballero Caballero, M., 2023. Mezcal Agroindustry Contribution to Climate Change in Oaxaca. In: W. Leal Filho, G.J. Nagy and D. Ayal, eds. Handbook of Nature-Based Solutions to Mitigation and Adaptation to Climate Change. [online] Cham: Springer International Publishing. pp.1–28. https://doi.org/10.1007/978-3-030-98067-2_60-1

Larios, E., Búrquez, A., Becerra, J.X. and Lawrence Venable, D., 2014. Natural selection on seed size through the life cycle of a desert annual plant. Ecology, 95(11), pp.3213–3220. https://doi.org/10.1890/13-1965.1

Mandujano, M.C., Montaña, C. and Rojas-Aréchiga, M., 2005. Breaking seed dormancy in Opuntia rastrera from the Chihuahuan desert. Journal of Arid Environments, 62(1), pp.15–21. https://doi.org/10.1016/j.jaridenv.2004.10.009

Nobel, P.S., 1984. Productivity of Agave deserti: measurement by dry weight and monthly prediction using physiological responses to environmental parameters. Oecologia, 64(1), pp.1–7. https://doi.org/10.1007/BF00377535

Pirredda, M., Fañanás-Pueyo, I., Oñate-Sánchez, L. and Mira, S., 2023. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. Plants, 13(1), p.41. https://doi.org/10.3390/plants13010041

Popova, E., Kim, H.H., Saxena, P.K., Engelmann, F. and Pritchard, H.W., 2016. Frozen beauty: The cryobiotechnology of orchid diversity. Biotechnology Advances, 34(4), pp.380–403. https://doi.org/10.1016/j.biotechadv.2016.01.001

Pradhan, N., Fan, X., Martini, F., Chen, H., Liu, H., Gao, J. and Goodale, U.M., 2022. Seed viability testing for research and conservation of epiphytic and terrestrial orchids. Botanical Studies, 63(1), p.3. https://doi.org/10.1186/s40529-022-00333-0

Pritchard, H.W. and Nadarajan, J., 2008. Cryopreservation of Orthodox (Desiccation Tolerant) Seeds. In: B.M. Reed, ed. Plant Cryopreservation: A Practical Guide. [online] New York, NY: Springer New York. pp.485–501. https://doi.org/10.1007/978-0-387-72276-4_19

Rivera-Lugo, M., García-Mendoza, A., Simpson, J., Solano, E. and Gil-Vega, K., 2018. Taxonomic implications of the morphological and genetic variation of cultivated and domesticated populations of the Agave angustifolia complex (Agavoideae, Asparagaceae) in Oaxaca, Mexico. Plant Systematics and Evolution, 304(8), pp.969–979. https://doi.org/10.1007/s00606-018-1525-0

Schofield, E., Jones, E.P. and Sarasan, V., 2018. Cryopreservation without vitrification suitable for large scale cryopreservation of orchid seeds. Botanical Studies, 59(1), p.13. https://doi.org/10.1186/s40529-018-0229-7

Trejo, L., Soriano, D., Romano-Grande, E., Sánchez-Carmona, B. and Dávila-Navarro, D.E., 2024. Diversity of reproductive characters, seed set, and viability of Agave seeds used for pulque production and their wild relatives in Tlaxcala, Mexico. Genetic Resources and Crop Evolution, 71(6), pp.2877–2903. https://doi.org/10.1007/s10722-023-01803-5

Ulloa Ulloa, C., Acevedo-Rodríguez, P., Beck, S., Belgrano, M.J., Bernal, R., Berry, P.E., Brako, L., Celis, M., Davidse, G., Forzza, R.C., Gradstein, S.R., Hokche, O., León, B., León-Yánez, S., Magill, R.E., Neill, D.A., Nee, M., Raven, P.H., Stimmel, H., Strong, M.T., Villaseñor, J.L., Zarucchi, J.L., Zuloaga, F.O. and Jørgensen, P.M., 2017. An integrated assessment of the vascular plant species of the Americas. Science, 358(6370), pp.1614–1617. https://doi.org/10.1126/science.aao0398

Villanueva Castillo, D.M., Velasco Velasco, V.A., De Los Santos Romero, R.B., Ruiz Luna, J. and Rodríguez Ortíz, G., 2021. Variación morfométrica en semillas de agaves silvestres de Oaxaca. Revista Mexicana de Ciencias Agrícolas, 12(1), pp.155–162. https://doi.org/10.29312/remexca.v12i1.2426




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.61933

DOI: http://dx.doi.org/10.56369/tsaes.6193



Copyright (c) 2025 Jesús Ignacio Reyes Díaz, Jorge Luis Lechuga-Campuzano, Hilda Guadalupe García-Núñez, Amaury Martín Arzate-Fernández, María Dolores Mariezcurrena-Berasaín

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.