MILK PRODUCTION IN HOLSTEIN COWS FED DIETS SUPPLEMENTED WITH ORGANIC AND INORGANIC SOURCES OF COPPER AND ZINC: SYSTEMATIC REVIEW AND META-ANALYSIS
Abstract
Keywords
Full Text:
PDFReferences
Bach, A., Pinto, A. and Blanch, M., 2015. Association between chelated trace mineral supplementation and milk yield, reproductive performance, and lameness in dairy cattle. Livestock Science, 182, pp. 69-75. https://doi.org/10.1016/j.livsci.2015.10.023
Banadaky, M.D., Rajaei-Sharifabadi, H., Hafizi, M., Hashemi, S.A., Kalanaky, S., Fakharzadeh, S., Shahbedini, S.P., Rezayazdi, K. and Nazaran, M.H., 2021. Lactation responses of Holstein dairy cows to supplementation with a combination of trace minerals produced using the advanced chelate compounds technology. Tropical Animal Health and Production, 53, pp.1-9. https://doi.org/10.1007/s11250-020-02539-5
Cope, C.M., Mackenzie, A.M., Wilde, D. and Sinclair, L.A., 2009. Effects of level and form of dietary zinc on dairy cow performance and health. Journal of Dairy Science, 92(5), pp.2128-2135. https://doi.org/10.3168/jds.2008-1232
Cortinhas, C.S., Freitas Júnior, J.E.D., Naves, J.D.R., Porcionato, M. A. D. F., Rennó, F.P. and Santos, M.V. D., 2012. Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic profile, milk yield and composition. Revista Brasileira de Zootecnia, 41, pp. 1477-1483. https://doi.org/10.1590/S1516-35982012000600023
Chester-Jones, H., Vermeire, D., Brommelsiek, W., Brokken, K., Marx, G. and Linn, J.G., 2013. Effect of trace mineral source on reproduction and milk production in Holstein cows. The Professional Animal Scientist, 29(3), pp.289-297. https://doi.org/10.15232/S1080-7446(15)30235-7
da Silva, G.G., da Silva Dias, M.S., Takiya, C.S., Nunes, A.T., Del Valle, T.A., Grigoletto, N.T.S. and Rennó, F.P., 2023. Feeding reduced levels of trace minerals in proteinate form and selenium-yeast to transition cows: Performance, trace minerals, and antioxidant status, peripheral neutrophil activity, and oocyte quality. Journal of Dairy Science, 106(4), pp.3023-3042. https://doi.org/10.3168/jds.2022-21939
Del Valle, T.A., Jesus, E.F.D., Paiva, P. G. D., Bettero, V.P., Zanferari, F., Acedo, T.S. and Rennó, F.P., 2015. Effect of organic sources of minerals on fat-corrected milk yield of dairy cows in confinement. Revista Brasileira de Zootecnia, 44(3), pp.103-108. https://doi.org/10.1590/S1806-92902015000300004
DerSimonian, R. and Laird, N., 1986. Meta-analysis in clinical trials. Controlled clinical trials, 7(3), 177-188. https://doi.org/10.1016/0197-2456(86)90046-2
El Ashry, G.M., Hassan, A.A.M. and Soliman, S.M., 2012. Effect of feeding a combination of zinc, manganese and copper methionine chelates of early lactation high producing dairy cow. Food and Nutrition Sciences, 3(8). http://dx.doi.org/10.4236/fns.2012.38144
Faulkner, M.J., Wenner, B.A., Solden, L.M. and Weiss, W.P., 2017. Source of supplemental dietary copper, zinc, and manganese affects fecal microbial relative abundance in lactating dairy cows. Journal of Dairy Science, 100(2), pp.1037-1044. https://doi.org/10.3168/jds.2016-11680
Galbraith, M.L., Vorachek, W.R., Estill, C.T., Whanger, P.D., Bobe, G., Davis, T.Z. and Hall, J.A., 2016. Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biological Trace Element Research, 171, pp.338-343. https://doi.org/10.1007/s12011-015-0560-8
Guimaraes, O., Wagner, J., Spears, J. and Engle, T., 2020. Influence of trace mineral source on digestion, ruminal volatile fatty acid and soluble mineral on steers fed a dairy type diet balanced to meet requirements for a high producing lactating dairy cow. Journal of Animal Science, 98(Suppl 3), pp.133. https://doi.org/10.1093/jas/skaa054.231
Goff, J.P., 2018. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4), pp.2763-2813. https://doi.org/10.3168/jds.2017-13112
Harrer, M., Cuijpers, P., Furukawa, T.A. and Ebert, D.D., 2021. Doing Meta-Analysis with R: A Hands-On Guide. Boca Raton, FL and London: Chapman and Hall/CRC Press. https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/
Higgins, J. P., Thompson, S.G., Deeks, J.J. and Altman, D.G., 2003. Measuring inconsistency in meta-analyses. BMJ, 327, pp.557-560. https://doi.org/10.1136/bmj.327.7414.557
Higgins, J.P., Li, T. and Deeks, J.J., 2019. Choosing effect measures and computing estimates of effect. Cochrane Handbook for Systematic Reviews of Interventions, pp.143-176. https://doi.org/10.1002/9781119536604.ch6
Kellogg, D.W., Tomlinson, D.J., Socha, M.T. and Johnson, A.B., 2004. Effects of zinc methionine complex on milk production and somatic cell count of dairy cows: Twelve-trial summary. The Professional Animal Scientist, 20(4), pp.295-301. https://doi.org/10.15232/S1080-7446(15)31318-8
Mion, B., Van Winters, B., King, K., Spricigo, J.F.W., Ogilvie, L., Guan, L. and Ribeiro, E.S., 2022. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre-and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. Journal of Dairy Science, 105(8), pp.6693-6709. https://doi.org/10.3168/jds.2022-21908
Miller, M.D., Lanier, J.S., Kvidera, S.K., Dann, H.M., Ballard, C.S. and Grant, R.J., 2020. Evaluation of source of corn silage and trace minerals on rumen characteristics and passage rate of Holstein cows. Journal of Dairy Science, 103(10), pp.8864-8879. https://doi.org/10.3168/jds.2020-18490
Navarro, M.F. and García, S.J.M., 2007. Formulación de preguntas clínicas e introducción a la estrategia de búsqueda de información. En Atención Sanitaria Basada en la Evidencia. Su aplicación a la práctica clínica. Consejería de Sanidad de la Región de Murcia. http://www.murciasalud.es/recursos/ficheros/136606
Nemec, L.M., Richards, J.D., Atwell, C.A., Diaz, D.E., Zanton, G.I. and Gressley, T.F., 2012. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. Journal of Dairy Science, 95(8), pp.4568-4577. http://dx.doi.org/ 10.3168/jds.2012-5404
Nocek, J.E., Socha, M.T. and Tomlinson, D.J., 2006. The effect of trace mineral fortification level and source on performance of dairy cattle. Journal of Dairy Science, 89(7), pp.2679-2693. https://doi.org/10.3168/jds.S0022-0302(06)72344-X
Ogilvie, L., Van Winters, B., Mion, B., King, K., Spricigo, J.F.W., Karrow, N.A. and Ribeiro, E.S., 2023. Effects of replacing inorganic salts of trace minerals with organic trace minerals in the diet of prepartum cows on quality of colostrum and immunity of newborn calves. Journal of Dairy Science, 106(5), pp.3493-3508. https://doi.org/10.3168/jds.2022-21913
Osorio, J.S., Trevisi, E., Li, C., Drackley, J.K., Socha, M.T. and Loor, J.J., 2016. Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. Journal of Dairy Science, 99(3), pp.1868-1883. http://dx.doi.org/10.3168/jds.2015-10040
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D. and Moher, D., 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, pp.372. https://doi.org/10.1136/bmj.n71
Pomport, P. H., Warren, H.E. and Taylor-Pickard, J., 2021. Effect of total replacement of inorganic with organic sources of key trace minerals on performance and health of high producing dairy cows. Journal of Applied Animal Nutrition, 9(1), pp.23-30. https://doi.org/10.3920/JAAN2020.0018
Rabiee, A.R., Lean, I.J., Stevenson, M.A. and Socha, M.T., 2010. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. Journal of Dairy Science, 93(9), pp.4239-4251. https://doi.org/10.3168/jds.2010-3058
Roshanzamir, H., Rezaei, J. and Fazaeli, H., 2020. Colostrum and milk performance, and blood immunity indices and minerals of Holstein cows receiving organic Mn, Zn and Cu sources. Animal Nutrition, 6, pp.61–68. https://doi.org/10.1016/j.aninu.2019.08.003
Spears, J.W., 2003. Trace mineral bioavailability in ruminants. The Journal of Nutrition, 133(5), pp.1506S-1509S. https://doi.org/10.1093/jn/133.5.1506S
Spears, J.W. and Weiss, W.P., 2008. Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), pp.70-76. https://doi.org/10.1016/j.tvjl.2007.12.015
Viechtbauer, W., 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), pp.1-48. https://doi.org/10.18637/jss.v036.i03
Yasui, T., Ehrhardt, R.M., Bowman, G.R., Vázquez-Añon, M., Richards, J.D., Atwell, C.A. and Overton, T.R., 2019. Effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide challenge in midlactation dairy cows. Animal, 13(5), pp.1000-1008. https://doi.org/10.1017/S1751731118002525
Zhao, X.J., Li, Z.P., Wang, J.H., Xing, X.M., Wang, Z.Y., Wang, L. and Wang, Z.H., 2015. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. Journal of Veterinary Science, 16(4), pp.439-446. http://dx.doi.org/10.4142/jvs.2015.16.4.439
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.61797
DOI: http://dx.doi.org/10.56369/tsaes.6179
Copyright (c) 2025 Noé Galindo Dorantes

This work is licensed under a Creative Commons Attribution 4.0 International License.