MILK PRODUCTION IN HOLSTEIN COWS FED DIETS SUPPLEMENTED WITH ORGANIC AND INORGANIC SOURCES OF COPPER AND ZINC: SYSTEMATIC REVIEW AND META-ANALYSIS

Noé Galindo Dorantes, Maximino Huerta Bravo, Agustín Ruíz Flores, Enrique Genaro Martínez González, Alvin Gustavo Carrillo Hurtado, José Orlando Jiménez Paez

Abstract


Background. Preventing trace mineral deficiency in Holstein cows has a high impact on production, health, and reproduction. Inorganic sources of trace minerals are generally used because they are more economical compared to organic sources. Objective. A meta-analysis will be performed to determine the effect of including organic copper (Cu) and zinc (Zn) in the diet on milk production and the composition of Holstein cows. Methodology. Data were obtained from fourteen refereed scientific studies published between 2012 and 2023. The effect was determined by standardized mean difference (SMD) between the experimental treatment (Cu and Zn from organic sources) and the control treatment (Cu and Zn from sulfates). Results. The inclusion of organic Cu and Zn in the diet of cows did not significantly influence (P>0.05) milk production in Holstein cows. Feed intake and milk protein and fat percentages were not affected either. Implications. The study focused solely on measuring the effect on productive behavior and milk quality in Holstein cattle. However, minerals play a preponderant role in the correct functioning of the immune system of animals. Conclusion. The results indicate that organic and inorganic Cu and Zn sources can be used without affecting the performance of dairy cows.

Keywords


Dairy cows; trace minerals; organic trace minerals; performance.

Full Text:

PDF

References


Bach, A., Pinto, A. and Blanch, M., 2015. Association between chelated trace mineral supplementation and milk yield, reproductive performance, and lameness in dairy cattle. Livestock Science, 182, pp. 69-75. https://doi.org/10.1016/j.livsci.2015.10.023

Banadaky, M.D., Rajaei-Sharifabadi, H., Hafizi, M., Hashemi, S.A., Kalanaky, S., Fakharzadeh, S., Shahbedini, S.P., Rezayazdi, K. and Nazaran, M.H., 2021. Lactation responses of Holstein dairy cows to supplementation with a combination of trace minerals produced using the advanced chelate compounds technology. Tropical Animal Health and Production, 53, pp.1-9. https://doi.org/10.1007/s11250-020-02539-5

Cope, C.M., Mackenzie, A.M., Wilde, D. and Sinclair, L.A., 2009. Effects of level and form of dietary zinc on dairy cow performance and health. Journal of Dairy Science, 92(5), pp.2128-2135. https://doi.org/10.3168/jds.2008-1232

Cortinhas, C.S., Freitas Júnior, J.E.D., Naves, J.D.R., Porcionato, M. A. D. F., Rennó, F.P. and Santos, M.V. D., 2012. Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic profile, milk yield and composition. Revista Brasileira de Zootecnia, 41, pp. 1477-1483. https://doi.org/10.1590/S1516-35982012000600023

Chester-Jones, H., Vermeire, D., Brommelsiek, W., Brokken, K., Marx, G. and Linn, J.G., 2013. Effect of trace mineral source on reproduction and milk production in Holstein cows. The Professional Animal Scientist, 29(3), pp.289-297. https://doi.org/10.15232/S1080-7446(15)30235-7

da Silva, G.G., da Silva Dias, M.S., Takiya, C.S., Nunes, A.T., Del Valle, T.A., Grigoletto, N.T.S. and Rennó, F.P., 2023. Feeding reduced levels of trace minerals in proteinate form and selenium-yeast to transition cows: Performance, trace minerals, and antioxidant status, peripheral neutrophil activity, and oocyte quality. Journal of Dairy Science, 106(4), pp.3023-3042. https://doi.org/10.3168/jds.2022-21939

Del Valle, T.A., Jesus, E.F.D., Paiva, P. G. D., Bettero, V.P., Zanferari, F., Acedo, T.S. and Rennó, F.P., 2015. Effect of organic sources of minerals on fat-corrected milk yield of dairy cows in confinement. Revista Brasileira de Zootecnia, 44(3), pp.103-108. https://doi.org/10.1590/S1806-92902015000300004

DerSimonian, R. and Laird, N., 1986. Meta-analysis in clinical trials. Controlled clinical trials, 7(3), 177-188. https://doi.org/10.1016/0197-2456(86)90046-2

El Ashry, G.M., Hassan, A.A.M. and Soliman, S.M., 2012. Effect of feeding a combination of zinc, manganese and copper methionine chelates of early lactation high producing dairy cow. Food and Nutrition Sciences, 3(8). http://dx.doi.org/10.4236/fns.2012.38144

Faulkner, M.J., Wenner, B.A., Solden, L.M. and Weiss, W.P., 2017. Source of supplemental dietary copper, zinc, and manganese affects fecal microbial relative abundance in lactating dairy cows. Journal of Dairy Science, 100(2), pp.1037-1044. https://doi.org/10.3168/jds.2016-11680

Galbraith, M.L., Vorachek, W.R., Estill, C.T., Whanger, P.D., Bobe, G., Davis, T.Z. and Hall, J.A., 2016. Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biological Trace Element Research, 171, pp.338-343. https://doi.org/10.1007/s12011-015-0560-8

Guimaraes, O., Wagner, J., Spears, J. and Engle, T., 2020. Influence of trace mineral source on digestion, ruminal volatile fatty acid and soluble mineral on steers fed a dairy type diet balanced to meet requirements for a high producing lactating dairy cow. Journal of Animal Science, 98(Suppl 3), pp.133. https://doi.org/10.1093/jas/skaa054.231

Goff, J.P., 2018. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4), pp.2763-2813. https://doi.org/10.3168/jds.2017-13112

Harrer, M., Cuijpers, P., Furukawa, T.A. and Ebert, D.D., 2021. Doing Meta-Analysis with R: A Hands-On Guide. Boca Raton, FL and London: Chapman and Hall/CRC Press. https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

Higgins, J. P., Thompson, S.G., Deeks, J.J. and Altman, D.G., 2003. Measuring inconsistency in meta-analyses. BMJ, 327, pp.557-560. https://doi.org/10.1136/bmj.327.7414.557

Higgins, J.P., Li, T. and Deeks, J.J., 2019. Choosing effect measures and computing estimates of effect. Cochrane Handbook for Systematic Reviews of Interventions, pp.143-176. https://doi.org/10.1002/9781119536604.ch6

Kellogg, D.W., Tomlinson, D.J., Socha, M.T. and Johnson, A.B., 2004. Effects of zinc methionine complex on milk production and somatic cell count of dairy cows: Twelve-trial summary. The Professional Animal Scientist, 20(4), pp.295-301. https://doi.org/10.15232/S1080-7446(15)31318-8

Mion, B., Van Winters, B., King, K., Spricigo, J.F.W., Ogilvie, L., Guan, L. and Ribeiro, E.S., 2022. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre-and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. Journal of Dairy Science, 105(8), pp.6693-6709. https://doi.org/10.3168/jds.2022-21908

Miller, M.D., Lanier, J.S., Kvidera, S.K., Dann, H.M., Ballard, C.S. and Grant, R.J., 2020. Evaluation of source of corn silage and trace minerals on rumen characteristics and passage rate of Holstein cows. Journal of Dairy Science, 103(10), pp.8864-8879. https://doi.org/10.3168/jds.2020-18490

Navarro, M.F. and García, S.J.M., 2007. Formulación de preguntas clínicas e introducción a la estrategia de búsqueda de información. En Atención Sanitaria Basada en la Evidencia. Su aplicación a la práctica clínica. Consejería de Sanidad de la Región de Murcia. http://www.murciasalud.es/recursos/ficheros/136606

Nemec, L.M., Richards, J.D., Atwell, C.A., Diaz, D.E., Zanton, G.I. and Gressley, T.F., 2012. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. Journal of Dairy Science, 95(8), pp.4568-4577. http://dx.doi.org/ 10.3168/jds.2012-5404

Nocek, J.E., Socha, M.T. and Tomlinson, D.J., 2006. The effect of trace mineral fortification level and source on performance of dairy cattle. Journal of Dairy Science, 89(7), pp.2679-2693. https://doi.org/10.3168/jds.S0022-0302(06)72344-X

Ogilvie, L., Van Winters, B., Mion, B., King, K., Spricigo, J.F.W., Karrow, N.A. and Ribeiro, E.S., 2023. Effects of replacing inorganic salts of trace minerals with organic trace minerals in the diet of prepartum cows on quality of colostrum and immunity of newborn calves. Journal of Dairy Science, 106(5), pp.3493-3508. https://doi.org/10.3168/jds.2022-21913

Osorio, J.S., Trevisi, E., Li, C., Drackley, J.K., Socha, M.T. and Loor, J.J., 2016. Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. Journal of Dairy Science, 99(3), pp.1868-1883. http://dx.doi.org/10.3168/jds.2015-10040

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D. and Moher, D., 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, pp.372. https://doi.org/10.1136/bmj.n71

Pomport, P. H., Warren, H.E. and Taylor-Pickard, J., 2021. Effect of total replacement of inorganic with organic sources of key trace minerals on performance and health of high producing dairy cows. Journal of Applied Animal Nutrition, 9(1), pp.23-30. https://doi.org/10.3920/JAAN2020.0018

Rabiee, A.R., Lean, I.J., Stevenson, M.A. and Socha, M.T., 2010. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. Journal of Dairy Science, 93(9), pp.4239-4251. https://doi.org/10.3168/jds.2010-3058

Roshanzamir, H., Rezaei, J. and Fazaeli, H., 2020. Colostrum and milk performance, and blood immunity indices and minerals of Holstein cows receiving organic Mn, Zn and Cu sources. Animal Nutrition, 6, pp.61–68. https://doi.org/10.1016/j.aninu.2019.08.003

Spears, J.W., 2003. Trace mineral bioavailability in ruminants. The Journal of Nutrition, 133(5), pp.1506S-1509S. https://doi.org/10.1093/jn/133.5.1506S

Spears, J.W. and Weiss, W.P., 2008. Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), pp.70-76. https://doi.org/10.1016/j.tvjl.2007.12.015

Viechtbauer, W., 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), pp.1-48. https://doi.org/10.18637/jss.v036.i03

Yasui, T., Ehrhardt, R.M., Bowman, G.R., Vázquez-Añon, M., Richards, J.D., Atwell, C.A. and Overton, T.R., 2019. Effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide challenge in midlactation dairy cows. Animal, 13(5), pp.1000-1008. https://doi.org/10.1017/S1751731118002525

Zhao, X.J., Li, Z.P., Wang, J.H., Xing, X.M., Wang, Z.Y., Wang, L. and Wang, Z.H., 2015. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. Journal of Veterinary Science, 16(4), pp.439-446. http://dx.doi.org/10.4142/jvs.2015.16.4.439




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.61797

DOI: http://dx.doi.org/10.56369/tsaes.6179



Copyright (c) 2025 Noé Galindo Dorantes

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.