Effect of arbuscular mycorrhizal fungi on the physiology and mineral content of maize crop

Arturo Reyes-Ramirez, Esau Ruiz-Sanchez, Walther Jesus Torres, Jorge Ismael Tucuch-haas, Horacio Salomon Ballina-Gomez, Gabriel Antonio Lugo Garcia, Carlos Juan Alvarado- Lopez, Rene Garruña Hernandez, Julio Cesar Ahuatzin-Hernandez, Roberto Rafael Ruiz-Santiago

Abstract


Background. The use of arbuscular mycorrhizal fungi (AMF) is an effective alternative to improve the conditions of maize crop. Objective. To evaluate the effect of four commercial AMF products on the physiological development and accumulation of macro and microelements in maize crop. Methodology. Under field conditions, the effect of AMF application on physiological parameters and accumulation of macro and microelements in maize leaves and grains was evaluated at 35 and 75 days after sowing. A randomized complete block design was used. The data were analyzed using analysis of variance, and means were compared using Tukey's test. Results The Biotech and M‑300 treatments significantly enhanced net photosynthesis, stomatal conductance, intercellular CO₂ concentration, and water‑use efficiency. Suppra treatment increased P, K, S, and Mg content in maize leaves. The content of macro and microelements in the grain showed no significant differences. Implication. This study highlights the positive influence of AMF inoculation on stomatal conductance and water use efficiency and macroelement content in maize leaves. Conclusion. The application of HMA had positive effects on the physiological performance and accumulation of phosphorus, potassium, sulfur, and manganese in maize leaves, but not in maize grain.

Keywords


Gas exchange; microbial inoculants; µ−X−Ray Fluorescence.

Full Text:

PDF

References


Augé, R.M., Toler, H.D., Sams, C.E. and Nasim, G., 2008. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza, 18, pp. 115-121. https://doi.org/10.1007/s00572-008-0162-9

Bautista, F., Frausto, O., Ihl, T. and Aguilar, Y., 2015. Actualización del mapa de suelos del Estado de Yucatán, México: Enfoque geomorfopedológico y WRB. Ecosistemas y Recursos Agropecuarios, 2(6), pp. 303-315.

Bennett, A.E. and Groten, K., 2022. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Annual Review of Plant Biology, 73, 649–672. https://doi.org/10.1146/annurev-arplant-102820-124504

Bücking, H., Liepold, E. and Ambilwade, P., 2012. The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Science, 4, pp. 108-132. http://dx.doi.org/10.5772/52570

Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., Robledo, C., 2020. InfoStat versión 2020. URL http://www.infostat.com.ar. In: Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

Castellanos, J.Z., Uvalle-Bueno, J.X. and Aguilar-Santelises, A., 2000. Manual de interpretación de análisis de suelo y agua (2ª ed.). Colección Instituto de Capacitación para la Productividad Agrícola (INCAPA). San Miguel de Allende, Guanajuato, México, 226 pp.

Chandrasekaran, M., Chanratana, M., Kim, K., Seshadri, S. and Sa, T., 2019. Impact of Arbuscular Mycorrhizal Fungi on Photosynthesis, Water Status, and Gas Exchange of Plants Under Salt Stress–A Meta-Analysis. Frontiers in Plant Science., 10, p. 457. https://doi.org/10.3389/fpls.2019.00457

Colina, E., Paredes, E., Gutiérrez, X. and Vera, M., 2020. Efecto de fertilización nitrogenada en maíz (Zea mays L.) sobre poblaciones de hongos micorrízicos, en Babahoyo. Journal of Science and Research, pp. 10-16. https://doi.org/10.5281/zenodo.4424768

Cozzolino, V., Di Meo, V. and Piccolo, A., 2013. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. Journal of Geochemical Exploration, 129, pp. 40-44. http://dx.doi.org/10.1016/j.gexplo.2013.02.006

Dodig, D., Božinovic, S., Nikoli?, A., Žori?, M., Van?etovi?, J., Ignjatovic-Mici?, D., Deli?, N., Weigelt-Fischer, K., Altmann, T. and Junker, A., 2021. Dynamics of Maize Vegetative Growth and Drought Adaptability Using Image-Based Phenotyping Under Controlled Conditions. Frontiers in Plant Science, 12, p. 652116. https://doi.org/10.3389/fpls.2021.652116

Espinoza, L., 2001. Growth and development. In L. Espinoza & J. Roos (Eds.), Corn production handbook (pp. 3–6). University of Arkansas, USDA and County Government Cooperating.

Fallas, R., Bertsch, F., Echandi, C. and Henríquez, C., 2011. Caracterización del desarrollo y absorción de nutrimentos del híbrido de maíz HC-57. Agronomía Costarricense, 35(2), pp. 33-47.

FAO, 2024. Maize. Recuperado de https://www.fao.org/land-water/databases-and-software/crop-information/maize/es/

Garruña-Hernández, R., Orellana, R., Larqué-Saavedra, A. and Canto, A., 2014. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature. PLoS One, 9(11), pp. e111402. https://doi.org/10.1371/journal.pone.0111402

Giovannetti, M. and Mosse, B., 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, pp. 489-500.

Gong, M., Tang, M., Chen, H., Zhang, Q. and Feng, X., 2013. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forests, 44, pp. 399-408. https://doi.org/10.1007/s11056-012-9349-1

Harris, D., Pacovsky, R.S. and Paul, E.A., 1985. Carbon economy of soybean-Rhizobium-Glomus associations. New Phytologist, 101, pp. 427–440. https://doi.org/10.1111/j.1469-8137.1985.tb02849.x

Jakobsen, I. and Rosendahl, L., 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 115(1), pp. 77–83. https://doi.org/10.1111/j.1469-8137.1990.tb00924.x

Jaradat, A. and Goldstein, W., 2018. Diversity of maize kernels from a breeding program for Protein Quality III: Ionome Profiling. Agronomy, 53, pp. 956-976. https://doi.org/10.2135/cropsci2012.07.0437

Jayne, B. and Quigley, M., 2014. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza, 24, pp. 109-119.

Johansson, J.F., Paul, L.R. and Finlay, R.D., 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48, pp. 1-13. https://doi.org/10.1016/j.femsec.2003.11.012

Koltai, H. and Kapulnik, Y., 2010. Arbuscular mycorrhizas: physiology and function. Dordrecht, the Netherlands: Springer.

Ma, Y., 2014. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus× canescens. Plant, Cell & Environment, 37, pp. 627-642. https://doi.org/10.1111/pce.12183

Majewska, M.L., Rola, K. and Zubek, S., 2017. The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 27, pp. 83-94. https://doi.org/10.1007/s00572-016-0729-9

Mena, A., Fernández, K., Olalde, V. and Serrato, R., 2013. Diferencias en la respuesta del maíz (Zea mays L.) a la inoculación con Glomus cubense (y. Rodr. & Dalpé) y con un conglomerado de especies de hongos micorrízicos arbusculares (HMA). Cultivos Tropicales, 34(2), pp. 12-5.

Millaleo, R., Reyes-Díaz, M., Ivanov, A.G., Mora, M.L. and Alberdi, M., 2010. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10(4), pp.470–481. http://dx.doi.org/10.4067/S0718-95162010000200008

Mirshad, P.P. and Puthur, J.T., 2016. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.). Environmental Monitoring and Assessment, 188, p. 425. https://doi.org/10.1007/s10661-016-5428-7

Morales-Morales, A.E., Andueza-Noh, R.H., Márquez-Quiroz, C., Benavides-Mendoza, A., Tun-Suarez, J.M., González-Moreno, A. and Alvarado-López, C.J., 2019. Caracterización morfológica de semillas de frijol caupí (Vigna unguiculata L. Walp) de la Península de Yucatán. Ecosistemas y Recursos Agropecuarios, 6(18), pp. 463-475. https://doi.org/10.19136/era.a6n18.2171

Niassy, S., Agbodzavu, M.K., Kimathi, E., Mutune, B., Abdel-Rahman, E.F.M., Salifu, D. and Tonnang, H.E.Z., 2021. Bioecology of fall armyworm Spodoptera frugiperda (J.E. Smith), its management and potential patterns of seasonal spread in Africa. PLoS One, 16(6), p. e0249042. https://doi.org/10.1371/journal.pone.0249042

Oljira, A.M., Hussain, T., Waghmode, T.R., Zhao, H., Sun, H., Liu, X., Wang, X. and Liu, B., 2020. Trichoderma enhances net photosynthesis, water use efficiency, and growth of wheat (Triticum aestivum L.) under salt stress. Microorganisms, 8(10), p. 1565. https://doi.org/10.3390/microorganisms8101565

Parniske, M., 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6, pp. 763-775. https://doi.org/10.1038/nrmicro1987

Qamar, S., Aslam, M., Huyop, F.Z. and Javed, M.A., 2017. A comparative study of the inorganic nutrients in different types of Zea mays L. using inductively coupled plasma mass spectrometry. Journal of Animal and Plant Sciences, 27, pp. 1315-1320.

Quiroga, G., Erice, G., Aroca, R., Zamarreño, Á.M., García-Mina, J.M. and Ruiz-Lozano, J.M., 2018. Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic properties in maize plants subjected to drought. Agricultural Water Management, 202, pp. 271-284. https://doi.org/10.1016/j.agwat.2017.12.012

Ruiz-Lozano, J.M., Aroca, R., Zamarreño, Á.M., Molina, S., Andreo-Jiménez, B., Porcel, R. and López-Ráez, J.A., 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell & Environment, 39, pp. 441-452. 419 https://doi.org/10.1111/pce.12631

Ruiz-Santiago, R.R., Ballina-Gómez, H.S., Ruiz-Sánchez, E., Martínez-Falcón, A.P., Andueza-Noh, R.H., Garruña-Hernández, R. and González-Moreno, A., 2024. Functional leaf traits of maize landraces with low and high susceptibility to damage by Spodoptera frugiperda (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science, 44(4), pp.1953-1963. https://doi.org/10.1007/s42690-024-01284-8

Rouf Shah, T., Prasad, K. and Kumar, P., 2016. Maize-A potential source of human nutrition and health: A review. Cogent Food & Agriculture, 2(1), pp.1166995. http://doi,.org/10.1080/23311932.2016.1166995

Sánchez, B., Rasmussen, A. and Porter, J.R., 2014. Temperatures and the growth and development of maize and rice: A review. Global Change Biology, 20(2), pp. 408-417. https://doi.org/10.1111/gcb.12389

Shi, J.Q., Ding, R.X., Liu, Y.Z. and Sun, Y.H., 1999. Acidification of soil by urea and fallen tea leaves. Journal of Tea Science, 19(1), pp. 7-12.

Shi, Z., Zhang, J., Lu, S., Liand, Y. and Wang, F., 2020. Arbuscular mycorrhizal fungi improve the performance of sweet sorghum grown in a Mo-contaminated soil. Journal of Fungi, 6(44), pp. 1-14. https://doi.org/10.3390/jof6020044

Smith, S.E. and Read, D.J., 2008. Mycorrhizal Symbiosis. Academic Press and Elsevier, London, UK.

Smith, S.E., Jakobsen, I., Grønlund, M. and Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156(3), pp.1050–1057. http://dx.doi.org/10.1104/pp.111.174581

Srivastava, P., Saxena, B. and Giri, B., 2017. Arbuscular mycorrhizal fungi: green approach/technology for sustainable agriculture and environment. In Mycorrhiza-nutrient uptake. Biocontrol, Ecorestoration. Springer, pp. 355-386. https://doi.org/10.1007/978-3-319-68867-1_20

Tisdale, S.L., Nelson, W.L., Beaton, J.D. and Havlin, J.H., 1993. Soil Fertility and Fertilizers (5th ed.). New York, NY: Macmillan Publishing Company.

Toljander, J.F., Santos-González, J.C., Tehler, A. and Finlay, R.D., 2008. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiology Ecology, 65, pp. 323-338. https://doi.org/10.1111/j.1574-6941.2008.00512.x

Valentine, A.J., Mortimer, P.E., Kleinert, A., Kang, Y. and Benedito, V.A., 2013. Carbon metabolism and costs of arbuscular mycorrhizal associations to host roots. In: Aroca, R. (ed.), Symbiotic Endophytes, vol. 37. Soil biology, pp. 233–252. https://doi.org/10.1007/978-3-642-39317-4_12

Xie, L.L., Weng, H.X., Hong, C.L. and Yan, A.L., 2007. Uptake of bok-choy and Ipomoea aquatica Forsk to iodine species. Plant Nutrition and Fertilizer Science, 13(1), pp. 123-128.

Yu-kui, R., Shi-ling, J., Fu-suo, Z. and Jian-bo, S., 2009. Effects of nitrogen fertilizer input on the composition of mineral elements in corn grain. Agrociencia, 43(1), pp. 21-27.

Zamudio-González, B., Tadeo-Robledo, M., Espinosa-Calderón, A., Martínez Rodríguez, J.N., Celis Euan, D.I., Valdivia Bernal, R. and Zaragoza Esparza, J., 2015. Eficiencia agronómica de fertilización al suelo de macro nutrimentos en híbridos de maíz. Revista Mexicana de Ciencias Agrícolas, 6(7), pp. 1557-1569.

Zhu, X.C., Song, F.B., Liu, S.Q., Liu, T.D. and Zhou, X., 2012. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant, Soil and Environment, 58(4), pp. 186-191. http://doi.org/10.1007/s11032-011-9671-x




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i3.61529

DOI: http://dx.doi.org/10.56369/tsaes.6152



Copyright (c) 2025 Walther Jesus Torres, Arturo Reyes-Ramirez, Esau Ruiz-Sanchez, Jorge Ismael Tucuch-haas, Horacio Salomon Ballina-Gomez, Gabriel Antonio Lugo Garcia, Carlos Juan Alvarado- Lopez, Rene Garruña Hernandez, Julio Cesar Ahuatzin-Hernandez, Roberto Rafael Ruiz-Santiago

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.