PROBIOTICS: ALTERNATIVE FOR BROILER PRODUCTION UNDER HEAT STRESS CONDITIONS

Ana Cecilia Hernández-Coronado, Miguel Cervantes Ramírez, Adriana Morales Trejo

Abstract


Background: Currently, poultry industry faces the challenge of maintaining high production levels even with the prohibition on the use of antibiotics as growth promoters, and the direct effects of heat stress on birds. The above leads to search for natural alternatives that contribute to maintain production without compromising the health of the birds or the consumer. With this problem, probiotics are considered safe and natural additives that are beginning to be used in poultry diets, whose results may vary depending on the climatic conditions and the response variables analyzed. Objective: To present a review regarding the impact of probiotics on broiler production, their mechanisms of action and their effects on animal health, with emphasis on poultry production under heat stress conditions. Methodology: An exhaustive literature search related to the topics mentioned in the objective was done using digital means for scientific information inquiry, especially in journals with high scientific impact. Original research and review articles published during the last five years, as well as articles considered as classical, were selected. The results of this search were discussed and analyzed for the preparation of the review. Results: The probiotic concept is defined, the species of microorganisms used to prepare a probiotic for animal nutrition are mentioned, and the characteristics and mode of action of probiotics are described. The results observed consistently upon the inclusion of probiotics in the diets of broilers reared under both thermoneutral and heat stress conditions are discussed. In addition, advantages and disadvantages of probiotics in the diet as well as changes in international regulations favoring their dietary inclusion to promote a safe and sustainable poultry production are included in this review. Implications: Scientific evidences support the use of probiotics as a suitable alternative to improve the wellbeing of broilers and the efficiency of the poultry industry under heat stress conditions; however, it is important to know the microorganism type, its characteristics, dosage and benefits of using it with regards to the probiotic being used, in relation to the production system where it will be used. Conclusion: The use of probiotics in diets for broilers reared under heat stress conditions is an interesting alternative aimed at reducing economical losses and improving the wellbeing of the birds. 

Keywords


Probiotics; feed additives; poultry; thermal stress.

Full Text:

PDF

References


Abd El-Ghany, W.A. and Babazadeh, D., 2022. Betaine: A Potential Nutritional Metabolite in the Poultry Industry. Animals, 12(19), p.2624. https://doi.org/10.3390/ani12192624

Abd El-Hack, M.E., El-Saadony, M.T., Salem, H.M., El-Tahan, A.M., Soliman, M.M., Youssef, G.B.A., Taha, A.E., Soliman, S.M., Ahmed, A.E., El-kott, A.F., Al Syaad, K.M. and Swelum, A.A., 2022. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird’s health and production. Poultry Science, 101(4), p.101696. https://doi.org/10.1016/j.psj.2022.101696

Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E., Qattan, S.Y.A., Batiha, G.E., Khafaga, A.F., Abdel-Moneim, A.M.E. and Alagawany, M., 2020. Probiotics in poultry feed: A comprehensive review. Journal of Animal Physiology and Animal Nutrition, 104(6), pp.1835–1850. https://doi.org/10.1111/jpn.13454

Abdel-Moneim, A.M.E., Shehata, A.M., Khidr, R.E., Paswan, V.K., Ibrahim, N.S., El-Ghoul, A.A., Aldhumri, S.A., Gabr, S.A., Mesalam, N.M., Elbaz, A.M., Elsayed, M.A., Wakwak, M.M. and Ebeid, T.A., 2021. Nutritional manipulation to combat heat stress in poultry – A comprehensive review. Journal of Thermal Biology, 98(February), p.102915. https://doi.org/10.1016/j.jtherbio.2021.102915

Abdelqader, A., Abuajamieh, M., Hayajneh, F. and Al-Fataftah, A.R., 2020. Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens. Journal of Thermal Biology, 92(April), p.102654. https://doi.org/10.1016/j.jtherbio.2020.102654

Abou-Kassem, D.E., Elsadek, M.F., Abdel-Moneim, A.E., Mahgoub, S.A., Elaraby, G.M., Taha, A.E., Elshafie, M.M., Alkhawtani, D.M., Abd El-Hack, M.E. and Ashour, E.A., 2021. Growth, carcass characteristics, meat quality, and microbial aspects of growing quail fed diets enriched with two different types of probiotics (Bacillus toyonensis and Bifidobacterium bifidum). Poultry Science, 100(1), pp.84–93. https://doi.org/10.1016/j.psj.2020.04.019

Abreu, R., Semedo-lemsaddek, T. and Cunha, E., 2023. Antimicrobial Drug Resistance in Poultry Production : Current Status and Innovative Strategies for Bacterial Control. Microorganisms, 11, p.953. https://doi.org/10.3390/microorganisms11040953

Ahmad, R., Yu, Y., Hsiao, F.S., Dybus, A., Ali, I., Hsu, H. and Cheng, Y., 2022. Probiotics as a Friendly Antibiotic Alternative: Assessment of Their Effects on the Health and Productive Performance of Poultry. Fermentation, 8, p.672. https://doi.org/10.3390/fermentation8120672

Applegate, T.J., Klose, V., Steiner, T., Ganner, A. and Schatzmayr, G., 2010. Probiotics and phytogenics for poultry : Myth or reality ? 1. The Journal of Applied Poultry Research, 19(2), pp.194–210. https://doi.org/10.3382/japr.2010-00168

Atela, J.A., Mlambo, V. and Mnisi, C.M., 2019. A multi-strain probiotic administered via drinking water enhances feed conversion ef fi ciency and meat quality traits in indigenous chickens. Animal Nutrition, 5(2), pp.179–184. https://doi.org/10.1016/j.aninu.2018.08.002

Ayalew, H., Zhang, H., Wang, J., Wu, S., Qiu, K. and Qi, G., 2022. Potential Feed Additives as Antibiotic Alternatives in Broiler Production. Frontiers in Veterinary Science, 9, p.916473. https://doi.org/10.3389/fvets.2022.916473

Bao, C., Zhang, W., Wang, J., Liu, Y., Cao, H., Li, F., Liu, S., Shang, Z., Cao, Y. and Dong, B., 2022. The Effects of Dietary Bacillus amyloliquefaciens TL106 Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immunity, Epithelial Barrier Integrity, and Intestinal Microbiota in Broilers. Animals, 12, p.3085. https://doi.org/10.3390/ani12223085

Bromfield, J.I., Niknafs, S., Chen, X., Hellens, J. Von, Horyanto, D., Sun, B., Yu, L., Hai, V., Navarro, M. and Roura, E., 2024. The evaluation of next-generation probiotics on broiler growth performance, gut morphology, gut microbiome, nutrient digestibility, in addition to enzyme production of Bacillus spp . in vitro. Animal Nutrition, 18, pp.133–144. https://doi.org/10.1016/j.aninu.2024.03.013

Camacho, F., Macedo, A. and Malacata, F., 2019. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries : A Short Review. Marine Drugs, 17, p.312. https://doi.org/10.3390/md17060312

Cao, G.T., Zhan, X.A., Zhang, L.L., Zeng, X.F., Chen, A.G. and Yang, C.M., 2018. Modulation of broilers’ caecal microflora and metabolites in response to a potential probiotic Bacillus amyloliquefaciens. Journal of Animal Physiology and Animal Nutrition, 102(2), pp.e909–e917. https://doi.org/10.1111/jpn.12856

Casanueva, A., Kotlarski, S., Liniger, M.A., Schwierz, C. and Fischer, A.M., 2023. Climate change scenarios in use : Heat stress in Switzerland. Climate Services, 30(June 2022), p.100372. https://doi.org/10.1016/j.cliser.2023.100372

Choi, J., Kong, B., Bowker, B.C., Zhuang, H. and Kim, W.K., 2023. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production : A Review. Animals, 13, p.1386. https://doi.org/10.3390/ani13081386

Chowdhury, M.A.H., Ashrafudoulla, M., Mevo, S.I.U., Mizan, M.F.R., Park, S.H. and Ha, S.D., 2023. Current and future interventions for improving poultry health and poultry food safety and security: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 22(3), pp.1555–1596. https://doi.org/10.1111/1541-4337.13121

Cole, J. and Desphande, J., 2019. Comment Poultry farming, climate change, and drivers of antimicrobial resistance in India. The Lancet Planetary Health, 3(12), pp.e494–e495. https://doi.org/10.1016/S2542-5196(19)30236-0

DOCE, 2003. Reglamento del Consejo y Parlamento Europeo EC/1831/2003, sobre aditivos de uso en producción animal. DOCE L 286/29, 18/1072003

DOUE, 2018. Reglamento (UE) 2019/6 del Parlamento Europeo y del Consejo, de 11 de diciembre de 2018, sobre medicamentos veterinarios y por el que se deroga la Directiva 2001/82/CE. DOUE-L-2019-80010.

El-saadony, M.T., Salem, H.M., El-tahan, A.M., El-mageed, T.A.A., Soliman, S.M., Khafaga, A.F., Swelum, A.A., Ahmed, A.E., Alshammari, F.A. and El-hack, M.E.A., 2022. The control of poultry salmonellosis using organic agents : an updated overview. Poultry Science, 101(4), p.101716. https://doi.org/10.1016/j.psj.2022.101716

FAO, 2023. Gateway to Poultry Production and Products. [online] Available at: http://www.fao.org/poultry-production-products/production/en/

La Fata, G., Weber, P. and Mohajeri, M.H., 2018. Probiotics and the Gut Immune System : Indirect Regulation. Probiotics and Antimicrobial Proteins, 10(1), pp.11–21. https://doi.org/10.1007/s12602-017-9322-6.

FDA. Center for Veterinary Medicine, 2023. Timeline of FDA Action on Antimicrobial Resistance. [online] Available at: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/timeline-fda-action-antimicrobial-resistance

Feng, Y., Wu, X., Hu, D., Wang, C., Chen, Q. and Ni, Y., 2023. Comparison of the Effects of Feeding Compound Probiotics and Antibiotics on Growth Performance, Gut Microbiota, and Small Intestine Morphology in Yellow-Feather Broilers. Microorganisms, 11, p.2308. https://doi.org/10.3390/microorganisms11092308

Fernandes, E., Raymundo, A., Louro Martins, L., Lordelo, M. and de Almeida, A.M., 2023. The Naked Neck Gene in the Domestic Chicken : A Genetic Strategy to Mitigate the Impact of Heat Stress in Poultry Production — A Review. Animals, 13, p.1007. https://doi.org/10.3390/ani13061007.

Fu, S., Sun, J., Qian, L. and Li, Z., 2008. Bacillus phytases: present scenario and future perspectives. Appl Biochem Biotechnol, 151(1), pp.1–8. https://doi.org/10.1007/s12010-008-8158-7

Fuhrmann, L., Vahjen, W., Zentek, J. and Günther, R., 2022. The Impact of Pre- and Probiotic Product Combinations on Ex Vivo Growth of Avian Pathogenic Escherichia coli and Salmonella Enteritidis. Microorganisms, 10, p.121. https://doi.org/10.3390/microorganisms10010121

Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., Topping, D.L., Suzuki, T., Taylor, T.D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M. and Ohno, H., 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469(7331), pp.543–547. https://doi.org/10.1038/nature09646

Haque, H., Sarker, S., Islam, S., Islam, A. and Anwer, M.S., 2020. Sustainable Antibiotic-Free Broiler Meat Production : Current Trends, Challenges, and Possibilities in a Developing Country Perspective. Biology, 9, p.0411. https://doi.org/10.3390/biology9110411

Idrees, M., Imran, M., Atiq, N., Zahra, R., Abid, R., Alreshidi, M., Roberts, T., Abdelgadir, A., Tipu, M.K., Farid, A., Olawale, O.A. and Ghazanfar, S., 2022. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Frontiers in Nutrition, 9, p.959941. https://doi.org/10.3389/fnut.2022.959941

Ismail, H., Ibrahim, D., Sayed, S. El, Wahdan, A., El-tarabili, R.M., El-ghareeb, W.R., Alhawas, B.A., Alahmad, B.A.Y., Abdel-raheem, S.M. and El-hamid, M.I.A., 2023. Prospective Application of Nanoencapsulated Bacillus amyloliquefaciens on Broiler Chickens ’ Performance and Gut Health with Efficacy against Campylobacter jejuni Colonization. Animals, 13, p.775. https://doi.org/10.3390/ani13050775

Jha, R., Das, R., Oak, S. and Mishra, P., 2020. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals, 10, p.863. https://doi.org/10.3390/ani10101863

Jiang, S., Yan, F., Hu, J., Mohammed, A. and Cheng, H., 2021. Bacillus subtilis -Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals, 11, p.1494. https://doi.org/10.3390/ani11061494

Juricova, H., Matiasovicova, J., Faldynova, M., Sebkova, A., Kubasova, T., Prikrylova, H., Karasova, D., Crhanova, M., Havlickova, H. and Rychlik, I., 2022. Probiotic Lactobacilli Do Not Protect Chickens against Salmonella Enteritidis Infection by Competitive Exclusion in the Intestinal Tract but in Feed, Outside the Chicken Host. Microorganisms, 10, p.219. https://doi.org/10.3390/microorganisms10020219

Karppegiane De Oliveira, M.J., Sakomura, N.K., Dorigam, D.P., Doranalli, K., Soares, L. and Da Silva Viana, G., 2019. Bacillus amyloliquefaciens CECT 5940 alone or in combination with antibiotic growth promoters improves performance in broilers under enteric pathogen challenge. Poultry Science, 98(10), pp.4391–4400. https://doi.org/10.3382/ps/pez223

Khajeh Bami, M., Afsharmanesh, M. Ebrahimnejad, H., 2020. Effect of Dietary Bacillus coagulans and Different Forms of Zinc on Performance, Intestinal Microbiota, Carcass and Meat Quality of Broiler Chickens. Probiotics and Antimicrobial Proteins, 12(2), pp.461–472. https://doi.org/10.1007/s12602-019-09558-1

Kouhounde, S., Ad, K., Mounir, M., Giusti, A., Refinetti, P., Otu, A., Effa, E., Ebenso, B., Adetimirin, V.O. and Mercader, J., 2022. Applications of Probiotic-Based Multi-Components to Human, Animal and Ecosystem Health : Concepts, Methodologies, and Action Mechanisms. Microorganisms, 10, p.1700. https://doi.org/10.3390/microorganisms10091700

Larsberg, F., Sprechert, M., Hesse, D., Loh, G., Brockmann, G.A. and Kreuzer-redmer, S., 2023. Probiotic Bacillus Strains Enhance T Cell Responses in Chicken. Microorganisms, 11, p.269. https://doi.org/10.3390/microorganisms11020269

Lee, J. and Mienaltowski, M.J., 2023. Broiler White Striping : A Review of Its Etiology, Effects on Production, and Mitigation Efforts. Poultry, 2(2), pp.292–304. https://doi.org/10.3390/poultry2020022

Li, Q., Wan, G., Peng, C., Xu, L., Yu, Y., Li, L. and Li, G., 2020. Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Animal Science Journal, 91(1), p.e13433. https://doi.org/10.1111/asj.13433

Luo, C., Wang, L., Chen, Y. and Yuan, J., 2022. Supplemental Enzyme and Probiotics on the Growth Performance and Nutrient Digestibility of Broilers Fed with a Newly Harvested Corn Diet. Animals, 12, p.2381. https://doi.org/10.3390/ani12182381

Ma, T., Suzuki, Y. and Luo, L., 2018. Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Veterinary Immunology and Immunopathology, 205(July), pp.35–48. https://doi.org/10.1016/j.vetimm.2018.10.004

Markowiak, P. and ?li?ewska, K., 2018. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10, p.21. https://doi.org/10.1186/s13099-018-0250-0

Maske, B.L., Melo, G.V. De, Vale, S., Neto, D.C., Grace, S., Viesser, A., Dea, J. De, Giovana, M., Thomaz, V. and Soccol, C.R., 2021. A review on enzyme-producing lactobacilli associated with the human digestive process : From metabolism to application. Enzyme and Microbial Technology, 149, p.109836. https://doi.org/10.1016/j.enzmictec.2021.109836

Mehmood, A., Nawaz, M., Rabbani, M. and Mushtaq, M.H., 2023. In Vitro Characterization of Probiotic Potential of Limosilactobacillus fermentum against Salmonella Gallinarum Causing Fowl Typhoid. Animals, 13, p.1284. https://doi.org/10.3390/ani13081284

Mohammadi, H., Saghaian, S. and Boccia, F., 2023. Antibiotic-Free Poultry Meat Consumption and Its Determinants. Foods, 12, p.1776. https://doi.org/10.3390/foods12091776

Mohsin, M., Zhang, Z. and Yin, G., 2022. Effect of Probiotics on the Performance and Intestinal Health of Broiler Chickens Infected with Eimeria tenella. Vaccines, 10, p.97. https://doi.org/10.3390/vaccines10010097

Moretti, A.F., Brizuela, N.S., Bravo-Ferrada, B.M., Tymczyszyn, E.E. and Golowczyc, M.A., 2023. Current Applications and Future Trends of Dehydrated Lactic Acid Bacteria for Incorporation in Animal Feed Products. Fermentation, 9, p.742. https://doi.org/10.3390/fermentation9080742

Moustafa, E.S., Alsanie, W.F., Gaber, A., Kamel, N.N., Alaqil, A.A. and Abbas, A.O., 2021. Blue-Green Algae ( Spirulina platensis ) Alleviates the Negative Impact of Heat Stress on Broiler Production Performance and Redox Status. Animals, 11, p.1243. https://doi.org/10.3390/ani11051243

Ogbuewu, I.P., Mabelebele, M., Sebola, N.A. and Mbajiorgu, C., 2022. Bacillus Probiotics as Alternatives to In-feed Antibiotics and Its Influence on Growth, Serum Chemistry, Antioxidant Status, Intestinal Histomorphology, and Lesion Scores in Disease-Challenged Broiler Chickens. Frontiers in Veterinary Science, 9, p.876725. https://doi.org/10.3389/fvets.2022.876725

Oladokun, S., Dridi, S., Adewole, D., Edh, T.A.G. and Tag, I., 2023. Tag edH1 An evaluation of the thermoregulatory potential of in ovo delivered bioactive substances (probiotic, folic acid, and essential oil) in broiler chickens Tag edEn. Poultry Science, 102(5), p.102602. https://doi.org/10.1016/j.psj.2023.102602

Oladokun, S., Koehler, A., Macisaac, J., Ibeagha-awemu, E.M. and Adewole, D.I., 2021. Bacillus subtilis delivery route : effect on growth performance, intestinal morphology, cecal short-chain fatty acid concentration, and cecal microbiota in broiler chickens. Poultry Science, 100(3), p.100809. https://doi.org/10.1016/j.psj.2020.10.063

Park, I., Lee, Y., Goo, D., Zimmerman, N.P., Smith, A.H., Rehberger, T. and Lillehoj, H.S., 2020. IMMUNOLOGY, HEALTH AND DISEASE The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99(2), pp.725–733. https://doi.org/10.1016/j.psj.2019.12.002

Perricone, V., Sandrini, S., Irshad, N., Savoini, G., Comi, M. and Agazzi, A., 2022. Yeast-Derived Products : The Role of Hydrolyzed Yeast and Yeast Culture in Poultry Nutrition — A Review. Animals, 12, p.1426. https://doi.org/10.3390/ani12111426

Popov, I. V, Algburi, A., Prazdnova, E. V, Mazanko, M.S., Elisashvili, V., Bren, A.B., Chistyakov, V.A., Tkacheva, E. V, Trukhachev, V.I., Donnik, I.M., Ivanov, Y.A., Rudoy, D., Ermakov, A.M., Weeks, R.M. and Chikindas, M.L., 2021. A Review of the Effects and Production of Spore-Forming Probiotics for Poultry. Animals, 11, p.1941. https://doi.org/10.3390/ani11071941

Rabetafika, H.N., Ebenso, B. and Razafindralambo, H.L., 2023. Probiotics as Antibiotic Alternatives for Human and Animal Applications. Encyclopedia, 3, pp.561–581. https://doi.org/10.3390/encyclopedia3020040

Racines, M.P., Solis, M.N., Anna, M., Herich, R., Á, M.L.- and Revajov, V., 2023. An Overview of the Use and Applications of Limosilactobacillus fermentum in Broiler Chickens. Microorganisms, 8, p.1944. https://doi.org/10.3390/microorganisms11081944

Ramlucken, U., Ramchuran, S.O., Moonsamy, G., Jansen, C., Rensburg, V., Thantsha, M.S. and Lalloo, R., 2021. Production and stability of a multi-strain Bacillus based probiotic product for commercial use in poultry. Biotechnology Reports, 29, p.e00575. https://doi.org/10.1016/j.btre.2020.e00575

Ramlucken, U., Thantsha, M.S., Lalloo, R., Roets, Y., Moonsamy, G. and Rensburg, C.J. Van, 2020. Advantages of Bacillus- based probiotics in poultry production. Livestock Science, 241(January), p.104215. https://doi.org/10.1016/j.livsci.2020.104215

Rasaei, D., Hosseinian, S.A., Asasi, K., Shekarforoush, S.S. and Khodakaram-tafti, A., 2023. The beneficial effects of spraying of probiotic Bacillus and Lactobacillus bacteria on broiler chickens experimentally infected with avian influenza virus H9N2. Poultry Science, 102, p.102669. https://doi.org/10.1016/j.psj.2023.102669

Ruvalcaba-Gómez, J.M., Villagrán, Z., Valdez-Alarcón, J.J., Martínez-Núñez, M., Gomez-Godínez, L.J., Ruesga-Gutiérrez, E., Anaya-Esparza, L.M., Arteaga-Garibay, R.I. and Villarruel-López, A., 2022. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals, 12, p.102. https://doi.org/10.3390/ani12010102

Saeed, M., Abbas, G., Alagawany, M., Kamboh, A.A., El-hack, M.E.A., Khafaga, A.F. and Chao, S., 2019. Heat stress management in poultry farms: A comprehensive overview. Journal of Thermal Biology, 84(February), pp.414–425. https://doi.org/10.1016/j.jtherbio.2019.07.025

Shehata, A.A., Yalç?n, S., Latorre, J.D., Basiouni, S., Attia, Y.A., El-wahab, A.A., Visscher, C., El-seedi, H.R., Huber, C. and Hafez, H.M., 2022. Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms, 10, p.395. https://doi.org/10.3390/microorganisms10020395

Shehata, A.M., Paswan, V.K., Attia, Y.A., Abdel-moneim, A.E., Abougabal, M.S., Sharaf, M., Elmazoudy, R., Alghafari, W.T., Osman, M.A., Farag, M.R. and Alagawany, M., 2021. Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens. Animals, 11, p.3491. https://doi.org/10.3390/ani11123491

Siddique, A., Azim, S., Ali, A., Adnan, F., Arif, M., Imran, M., Ganda, E. and Rahman, A., 2021. Lactobacillus reuteri and Enterococcus faecium from Poultry Gut Reduce Mucin Adhesion and Biofilm Formation of Salmonella enterica. Animals, 11, p.3435. https://doi.org/10.3390/ani11123435

Sionek, B., Szyd?owska, A., Zieli?ska, D., Neffe-Skoci?ska, K. and Ko?o?yn-Krajewska, D., 2023. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms, 11, p.1714. https://doi.org/10.3390/microorganisms11071714

Sokale, A.O., Menconi, A., Mathis, G.F., Lumpkins, B., Sims, M.D., Whelan, R.A. and Doranalli, K., 2019. Effect of Bacillus subtilis DSM 32315 on the intestinal structural integrity and growth performance of broiler chickens under necrotic enteritis challenge. Poultry Science, 98(11), pp.5392–5400. https://doi.org/10.3382/ps/pez368

Song, J., Xiao, K., Ke, Y.L., Jiao, L.F., Hu, C.H., Diao, Q.Y., Shi, B. and Zou, X.T., 2014. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 93(3), pp.581–588. https://doi.org/10.3382/ps.2013-03455

Soni, R., Keharia, H., Ph, D., Dunlap, C. and Pandit, N., 2022. Functional annotation unravels probiotic properties of a poultry isolate, Bacillus velezensis CGS1.1. LWT. Food Science and Technology, 153, p.112471. https://doi.org/10.1016/j.lwt.2021.112471

Szabó, R.T., Kovács-Weber, M., Zimborán, Á., Kovács, L. and Erdélyi, M., 2023. Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes—A Review. Molecules, 28, p.13. https://doi.org/10.3390/molecules28134956

Taha-Abdelaziz, K., Singh, M., Sharif, S., Sharma, S., Kulkarni, R.R., Alizadeh, M., Yitbarek, A. and Helmy, Y.A., 2023. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms, 11, p.113. https://doi.org/10.3390/microorganisms11010113

Wang, J., Ishfaq, M., Miao, Y., Liu, Z., Hao, M., Wang, C., Wang, J., Chen, X. and Al, W.E.T., 2022. Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poultry Science, 101, p.101693. https://doi.org/10.1016/j.psj.2021.101693

Wang, W.C., Yan, F.F., Hu, J.Y., Amen, O.A. and Cheng, H.W., 2018. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens 1. Journal of Animal Science, 96(5), pp.1654–1666. https://doi.org/10.1093/jas/sky092

Wang, Y. and Gu, Q., 2010. Effect of probiotic on growth performance and digestive enzyme activity of Arbor Acres broilers. Research in Veterinary Science, 89(2), pp.163–167. https://doi.org/10.1016/j.rvsc.2010.03.009

Wendel, U., 2022. Assessing Viability and Stress Tolerance of Probiotics — A Review. Frontiers in Microbiology, 12(January), p.818468. https://doi.org/10.3389/fmicb.2021.818468

Wu, Y., Wu, C., Che, Y., Zhang, T., Dai, C., Duan, K., Huang, Y., Li, N., Zhou, H., Wan, X., Wang, Y., Lei, H., Hao, P., Li, C. and Wu, Y., 2022. Effects of Glycyrrhiza Polysaccharides on Chickens ’ Intestinal Health and Homeostasis. Frontiers in Veterinary Science, 9(May), p.891429. https://doi.org/10.3389/fvets.2022.891429

Zhang, G., Yang, N., Liu, Z., Chen, X., Li, M., Fu, T. and Zhang, D., 2023. Genome-Assisted Probiotic Characterization and Application of Lactiplantibacillus plantarum 18 as a Candidate Probiotic for Laying Hen Production. Microorganisms, 11, p.2373. https://doi.org/10.3390/microorganisms11102373

Zhang, L., Liu, X. and Jia, H., 2022. WGCNA Analysis of Important Modules and Hub Genes of Compound Probiotics Regulating Lipid Metabolism in. Animals, 12, p.2644. https://doi.org/10.3390/ani12192644

Zhang, P., Yan, T., Wang, X., Kuang, S., Xiao, Y., Lu, W. and Bi, D., 2017. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Italian Journal of Animal Science, 16(2), pp.292–300. https://doi.org/10.1080/1828051X.2016.1264261

Zhang, S., Zhong, G., Shao, D., Wang, Q., Hu, Y., Wu, T. and Ji, C., 2021. Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community Experimental Design and Animal. Poultry Science, 100(3), p.100935. https://doi.org/10.1016/j.psj.2020.12.032

Zou, X.Y., Zhang, M., Tu, W.J., Zhang, Q., Jin, M.L., Fang, R.D. and Jiang, S., 2022. Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens. Animal, 16(3), p.100474. https://doi.org/10.1016/j.animal.2022.100474




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.59226

DOI: http://dx.doi.org/10.56369/tsaes.5922



Copyright (c) 2025 Adriana Morales, Ana Cecilia Hernández-Coronado, Miguel Cervantes Ramírez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.