ANALYSIS OF STUDIES OF Trichoderma spp. AS A CONTROL AGENT FOR SOIL PHYTOPATHOGENS

Georgina Sánchez Rivera, Hilda Elizabeth Flores Moctezuma, Federico Castrejón Ayala, Mónica Gutiérrez Rojas, Daniel Ruiz Juárez

Abstract


 Background: The biological model based on antagonistic microorganisms reduces risks of contamination to the soil, biota, flora, and ensures food quality and safety. Objetive: To analyze and describe scientific reports of antagonistic action of Trichoderma sp., to inhibit the development of microorganisms that live in soil and cause diseases in plants of agricultural interest. Methodology: 76 scientific documents on Trichoderma sp. antagonism against soil phytopathogenic fungi were compiled and analyzed. Results: According to the literature review, in the laboratory (75 %) and field (25 %), biological and technological systems take advantage of the use of native strains of Trichoderma sp., to reduce populations of phytopathogens and intensified production. Trichoderma sp. expressed antagonism against phytopathogenic fungi. The antagonistic properties that predominated in the Trichoderma genus have inhibition effects, due to competition for space and nutrients; antibiosis due to the production of antibiotic-lytic enzymes and mycoparasitism, where the phytopathogen is invaded in its mycelial reproduction phase by species of Trichoderma sp., however they depend on the favorable environment in the rhizosphere (25 ºC), relative humidity (80 %), pH (5.5), structure and good soil health. Implications: The physiology of Trichoderma sp. parasitism during the plant-pathogen interaction, in phytopathogenic species, results from recognition, adhesion-coiling, lytic activity, intracellular absorption, morphological changes of the phytopathogen cell, loss of cytoplasm and finally disintegration of host hyphae. Conclusions: 100% of the findings analyzed referred to the interaction of Trichoderma species on agricultural crops. 75% of the reports on Trichoderma sp. corresponded to in vitro studies and 25% to in vivo biological systems. Scientific reports of antagonistic action of Trichoderma sp. were based on studies of inhibition, competition and antibiosis, to disable the development of microorganisms that inhabit the soil and cause diseases in plants of agricultural interest.

Keywords


antibiosis; lytic activity; mycoparasitism; antagonistic potential.

Full Text:

PDF

References


Abo, E.K.A., Abdel, H.S.I. and Abdel, R.I.R., 2014. Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162, pp. 567-574. http://dx.doi.org/10.1111/jph.12228

Acosta-Suárez, M., Pichardo, T., Roque, B., Cruz-Martín, M., Mena, E., Leiva-Mora, M., Castro, R. and Alvarado-Capó, Y., 2013. Antagonismo in vitro de Trichoderma harzianum Rifai contra Mycosphaerella fijiensis Morelet. Biotecnologia Vegetal, 13, pp. 231-235 https://revista.ibp.co.cu/index.php/BV/article/view/124

Acosta, L.T., Azania, D.K. and Azania, R.F., 2021. Cultivo dual in-vitro de cepas nativas de Trichoderma spp. frente a Botrytis sp. patógeno de Passiflora ligularis Juss. Revista de Investigación Agropecuaria Science and Biotechnology, 1, pp. 43-55. https://doi.org/10.25127/riagrop.20214.720

Ainsworth, G.C. y Bisby's, G.R., 2009. Dictionary of the Fungi. 10th Edition. Cab Intl Edi. 616 p.

Alexopoulos, C.J. y Mims, C.W., 1979. Introductory Mycology. 3ªed. Nueva York, Willey

Andrade-Hoyos, P., Luna-Cruz, A., Osorio-Hernández, E., Molina-Gayosso, E., Landero-Valenzuela, N. and Barrales-Cureño, H.J., 2019. Antagonismo de Trichoderma spp. vs hongos asociados a la marchitez de chile. Revista Mexicana de Ciencias Agrícolas, 10, pp. 1259-1272. https://doi.org/10.29312/remexca.v10i6.1326

Astorga-Quirós, K., Meneses-Montero, K., Zúñiga-Vega, C., Brenes-Madriz, J.A. and Rivera-Méndez, W., 2014. Evaluación del antagonismo de Trichoderma sp. y Bacillus subtilis contra tres patógenos del ajo. Revista Tecnología en Marcha, 27, pp. 82-91. https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/1929/1755

Atanasova, L.D., Crom, S.L., Gruber, G.S., Coulpier, F.D., Seidl-Seiboth, V., Kubicek, P.C. and Druzhinina, I.S., 2013. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics, 14, pp. 1-15. https://doi.org/10.1186/1471-2164-14-121

Barboza-García, A., Pérez-Cordero, A. and Anaya-Chamorro, L., 2022. Especies nativas de Trichoderma aisladas de plantaciones de aguacate con actividad inhibitoria contra Phytophthora cinnamomi. Biotecnología en el Sector Agropecuario y Agroindustrial, 20, pp. 101-116. https://doi.org/10.18684/rbsaa.v20.n2.2022.1852

Benítez, T., Rincón, A.M., Limón, M.C. and Codón, A.C., 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, pp. 249-260. https://scielo.isciii.es/pdf/im/v7n4/Benitez.pdf

Bissett, J., Gams, W., Jaklitsch, W. and Samuels, G.J., 2015. Accepted Trichoderma names in the year 2015. IMA Fungus, 6, pp. 263-295. https://doi.org/10.5598/imafungus.2015.06.02.02

Boat, M.A.B., Iacomi, B.B., Sameza, M.L. and Boyom, F.F., 2018. Fungicide tolerance and effect of environmental conditions on growth of Trichoderma spp. with antagonistic activity against Sclerotinia sclerotiorum causing white mold of common bean (Phaseolus vulgaris). International Journal of Innovative Approaches in Agricultural Research, 2, pp. 226-243. https://doi.org/10.29329/ijiaar.2018.151.8

Brito, J.P.C., Ramada, H.S., de Magalhães, M.Tq., Silva, L.P. and Ulhoa, C.J., 2014. Peptaibols from Trichoderma asperellum TR356 strain isolated from Brazilian soil. Springer Plus, 3, pp. 600-612. https://doi.org/10.1186/2193-1801-3-600

Carsolio, C.C., Benhamou, N.A., Harán, S.D., Cortez, C.D., Gutiérrez, M.A. and Herrera-Estrella, A., 1999. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Applied and Environmental Microbiology, 65, pp. 929-935. https://doi.org/10.1128/aem.65.3.929-935.1999

Chaverri, P.E., Castlebury, L.A., Overton, B.E. and Samuels, G.J., 2003. Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia, 95, pp. 1100-1140. https://doi.org/10.2307/3761915

Demain, A.L. and Fang, A., 2000. The Natural Functions of Secondary Metabolites. In: A. Fiechter (ed.). History of Modern Biotechnology I, Advances in Biochemical Engineering/Biotechnology. Springer. pp. 1-39. Berlin. http://dx.doi.org/10.1007/3-540-44964-7_1

Díaz-Nájera, J.F., Vargas-Hernández, Ayvar-Serna, M.S., Alvarado-Gómez, O.G., Solís-Aguilar, J.F., Durán-Ramírez, J.A., Díaz-Ceniceros, H.L. and Hernández-Aguilar, A., 2014. Identificación morfológica y por PCR de Rhizoctonia solani Kühn a partir de frutos de calabaza pipiana y su manejo en invernadero. Biotecnia, 16, pp. 17-21. https://doi.org/10.18633/bt.v16i3.107

Dodds, P. N., 2023. From Gene-for-Gene to Resistosomes: Flor’s Enduring Legacy. MPMI. 36(8):461–467, https://doi.org/10.1094/MPMI-06-23-0081-HHH

Duarte-Leal, Y., Lamz-Piedra, A. and Martínez-Coca, B., 2017. Antagonismo in vitro de aislamientos de Trichoderma asperellum Samuels, Lieckfeldt and Nirenberg frente a Sclerotium rolfsii Sacc. Revista de Protección Vegetal, 32, pp. 1-11. http://scielo.sld.cu/pdf/rpv/v32n3/rpv03317.pdf

Sánchez-García, B.M., Espinosa-Huerta, E., Villordo-Pineda, E., Rodríguez-Guerra, R., y Mora-Avilés, M.A., 2017. Identificación molecular y evaluación antagónica in vitro de cepas nativas de Trichoderma spp. sobre hongos fitopatógenos de raíz en frijol (Phaseolus vulgaris L.) cv. Montcalm. Agrociencia, 51, pp. 63-79. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952017000100063&lng=es&tlng=es

Fraga, T.R., Stecca, S.A., Soller, R.M.H., Arruda, W. and Ulhoa, C.J., 2014. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnology Letters, 36, pp. 2095-2101. https://doi.org/10.1007/s10529-014-1583-5

Gajera, H.P., Hirpara, D.G. Savaliya, D.D. and Golakiya, B.A., 2020. Extracellular metabolomics of Trichoderma biocontroller for antifungal action to restrain Rhizoctonia solani Kuhn in cotton. Physiological and Molecular Plant Pathology, 112, pp. 15-47. https://doi.org/10.1016/j.pmpp.2020.101547

Galarza, L.P., Akagi, Y.Y., Takao, K.K., Kim, C.S., Maekawa, N.D., Itai, A.D. and Kodama, M.M., 2015. Characterization of Trichoderma species isolated in Ecuador and their antagonistic activities against phytopathogenic fungi from Ecuador and Japan. Journal of General Plant Pathology, 81, pp. 201-210. https://doi.org/10.1007/s10327-015-0587-x

García B.G., Araújo, C.F., da Costa, A.C. and Ulhoa, C.J., 2021. Avaliação do potencial de isolados de Trichoderma spp. nativosdo estado de Mato Groso do Sul contra o fungo Colletotrichum musae. Brazilian Journal of Development, 7, pp. 29484-29502. https://doi.org/10.34117/bjdv7n3-592

García-Gutiérrez, C. and Rodríguez-Meza, G.D., 2012. Problemática y riesgo ambiental por el uso de plaguicidas en Sinaloa. Ra Ximhai, 8, pp. 1-10. http://uaim.edu.mx/raximhai/index.php/ejemplares?view=article&id=25:ejemplar-no-25b&catid=8:ejemplares

García, R.I., Riera, R.A., Zambrano, C.T. and Gutiérrez, L.D., 2006. Desarrollo de un fungicida biológico a base de una cepa del hongo Trichoderma harzianum proveniente de la región andina venezolana. Fitosanidad, 10, pp. 115-121. https://www.redalyc.org/toc.oa?id=2091&numero=16102

Garrido, M. and Vilela, N., 2019. Capacidad antagónica de Trichoderma harzianum frente a Rhizoctonia, Nakatea sigmoidea y Sclerotium rolfsii y su efecto en cepas nativas de Trichoderma aisladas de cultivos de arroz. Scientia Agropecuaria,10, pp. 199-206. http://dx.doi.org/10.17268/sci.agropecu.2019.02.05

Gerbore, J., Benhamou, N. Vallance, J., Floch, G.L. Grizard, D.C., Regnault-Roger and Rey, P., 2014. Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environmental Science and Pollution Research, 21, pp. 1-14. http://dx.doi.org/10.1007/s11356-013-1807-6

Ghazanfar, M.U., Raza, M., Raza, W. and Qamar, M.I., 2018. Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. Plant Protection, 2, pp. 109-135. http://esciencepress.net/journals/PP

Goldman, G.H., Hayes, C. and Harman, G.E., 1994. Molecular and cellular biology of biocontrol by Trichoderma spp. Trends Biotechnology, 12, pp. 478-482. http://dx.doi.org/10.1016/0167-7799(94)90055-8

González-León, Y., Ortega-Bernal, J., Anducho-Reyes, M.A. y Mercado-Flores, Y., 2022. Bacillus subtilis y Trichoderma: Características generales y su aplicación en la agricultura. TIP. Revista Especializada en Ciencias Químico-Biológicas, 25, pp. e520. https://doi.org/10.22201/fesz.23958723e.2022.520

Guédez, C., Cañizalez, L., Castillo, C. and Olivar, R., 2012. Evaluación in vitro de aislamientos de Trichoderma harzianum para el control de Rhizoctonia solani, Sclerotium rolfsii y Fusarium oxysporum en plantas de tomate. Revista de la Sociedad Venezolana de Microbiología, 32, pp. 44-49. https://www.redalyc.org/toc.oa?id=1994&numero=24929

Hallstrom, K.N. and McCormick, B.A., 2015. Pathogenicity Islands: Origins, Structure, and Roles in Bacterial Pathogenesis. Molecular Medical Microbiology, 1, pp. 303-314. https://doi.org/10.1016/B978-0-12-397169-2.00016-0

Harman, E.G. and Kubicek, P.C., 1998. Trichoderma y Gliocladium. Enzimes, biological control and commercial applications. Vienna, Austria: Taylor & Francis. https://doi.org/10.1201/9781482267945

Hernández, M.J.L., Sánchez, P.M.I., González, P.J.M., Quiroz, V.J.D., García, O.J.G. and Gill, L.H.R., 2015. Antibiosis of Trichoderma spp. strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Brazilian Journal of Microbiology, 46, pp. 1093-1101. https://doi.org/10.1590/S1517-838246420120177

Howell, C.R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, pp. 4-10. https://doi.org/10.1094/PDIS.2003.87.1.4.

International Atomic Energy Agency (IAEA)., 2023. Control Biológico. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.iaea.org/es/temas/control-biologico#:~:text=El%20control%20biológico%20supone%20la,respetuosa%20con%20el%20medio%20ambiente Fecha de consulta: 24 de octubre de 2022.

Iqbal, S., Ashfaq, M., Malik, A.H., Haq, M.I.U. and Khan, K., 2022. Antagonistic screening and confronting potential of Trichoderma viride against Pakistani and American soil borne-pathogens (Pythium aphenidermatum, Fusarium oxysporum and Phytophthora capsici) in controlled conditions. Pakistan Journal of Phytopathology, 34, pp. 81-91. https://doi.org/10.33866/phytopathol.034.01.0752

Infante, D., Martínez, B., González, N. and Reyes, Y., 2009. Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal, 24, pp. 14-21. http://scielo.sld.cu/pdf/rpv/v24n1/rpv02109.pdf

Jaklitsch, W.M., Samuels, G.J., Dodd, S.L., Lu, B. and Druzhinina, I.S., 2006. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Studies Mycol, 55, pp. 135-177. https://doi.org/10.3114/sim.2006.56.04

Junaid, J.M., Dar, N.A., Bhat, T.A., Bhat, A. and Bhat, M.A., 2013. Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. International Journal of Modern Plant and Animal Sciences, 1, pp. 39-57.

Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., Hamss, H.E., Belabess, Z. and Barka, E.A., 2022. Biological control of plant pathogens: A global perspective. Microorganism, 10, pp. 563-596. https://doi.org/10.3390/microorganisms10030596

Lamichhane, J.R., Dürr, C., Schwanck, A.A., Robin, M.H., Sarthou, Cellier, J.P., Messéan V.A. and Aubertot, J.N., 2017. Integrated management of damping-off diseases. A review. Agronomy for Sustainable Development, 37, pp. 1-25. https://doi.org/10.1007/s13593-017-0417-y

Marques, S., Matos, C.T., Gírio, F.M., Roseiro, J.C. and Santos, J.A.L., 2017. Lactic acid production from recycled paper sludge; Process intensification by running fed-batch into a membrane-recycle biorreactor. Biochemical Engineering Journal, 120, pp. 63-72. https://doi.org/10.1016/j.bej.2016.12.021

Martínez, B., Reyes, Y., Infante, D., González, E., Baños, H. and Cruz, A., 2008. Selección de aislamientos de Trichoderma spp. candidatos a biofungicidas para el control de Rhizoctonia sp. en arroz. Revista de Protección Vegetal, 23, pp. 118-125. http://scielo.sld.cu/pdf/rpv/v23n2/rpv09208.pdf

Martínez, B., Infante, D. and Reyes, Y., 2013. Trichoderma spp. y su función en el control de plagas en los cultivos. Revista de Protección Vegetal, 28, pp. 1-11. http://scielo.sld.cu/pdf/rpv/v28n1/rpv01113.pdf

Martínez-Martínez, T.O., Guerrero-Aguilar, B.Z., Pecina-Quintero, V., Rivas-Valencia, P., González-Pérez, E. and Angeles-Núñez, J.C., 2020. Antagonismo de Trichoderma harzianum contra la fusariosis del garbanzo y su efecto biofertilizante. Revista Mexicana de Ciencias Agrícolas, 11, pp. 1135-1147. https://doi.org/10.29312/remexca.v11i5.2325

Mathivanan, N., Srinivasan, K. and Chelliah, S., 2000. Biological control of soil-borne diseases of cotton, eggplant, okra and sunflower by Trichoderma viride. Journal of Plant Diseases and Protection, 107, pp. 235-244. http://www.jstor.org/stable/43386990

Mahmoud, A.F.A., 2016. Evaluation of certain antagonistic fungal species for biological control of faba bean wilt disease incited by Fusarium oxysporum. Journal of Phytopathology and Pest Management, 3, pp. 1-14. https://ppmj.net/index.php/ppmj/article/view/53

Mahmoud, A.F.A. and Osama, A.A., 2018. Biocontrol efficacy of Trichoderma spp. against sesame wilt caused by Fusarium oxysporum f. sp. sesami. Archives of Phytopathology and Plant Protection, 51, pp. 277-287. https://doi.org/10.1080/03235408.2018.1471837

Michel-Aceves, A.C., Hernández-Morales, J., Toledo-Aguilar, R., Sabino L.J.E. and Romero-Rosales, T., 2019. Capacidad antagónica de Trichoderma spp. nativa contra Phytophthora parasitica y Fusarium oxysporum aislados de cultivos de jamaica. Revista Fitotecnia Mexicana, 42, pp. 235-241. https://doi.org/10.35196/rfm.2019.3.235

Morath, S.U., Hung, R. and Bennett, J.W., 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26, pp. 73-83. https://doi.org/10.1016/j.fbr.2012.07.001

Nager, L.L., Hazreen, N., Aqilah, N. Zaini, S.A.B.M. and Siddquee, S., 2017. Isolation of antagonistic Trichoderma spp. against selected phytopathogenic fungi from the field soils in Kelantan. Malaysian Journal of Microbiology, 13, pp. 73-78. https://doi.org/10.21161/mjm.89616

Organización de las Naciones Unidas para la Alimentación y la Agricultura., 2018. El futuro de la alimentación y la agricultura: vías alternativas hacia el 2050. Rome. http://www.fao.org/3/CA1553ES/ca1553es.pdf Fecha de consulta: 10 de mayo de 2022

Organización de las Naciones Unidas para la Alimentación y la Agricultura., 2023. Apoyo de la FAO al Programa de Manejo Integrado de Plagas en Asia. https://www.fao.org/agriculture/crops/noticias-eventos-boletines/detail/es/item/39763/icode/?no_cache=1#:~:text=El%20Manejo%20Integrado%20de%20Plagas,del%20agua%20y%20los%20nutrientes Fecha de consulta: 24 de junio de 2022

Osorio, H.E., Hernández, C.F.D., Rodríguez, H.R., Varela, F.S.E., Estrada, D.B. and López, S.J.A., 2016. Actividad antagónica de Trichoderma spp. sobre Rhizoctonia solani in vitro. Investigación y Ciencia, 24, pp. 5-11. https://revistas.uaa.mx/index.php/investycien/issue/view/177

Patel, S. and Saraf, M., 2017. Biocontrol efficacy of Trichoderma asperellum MSST against tomato wilting by Fusarium oxysporum f. sp. lycopersici. Archives of Phytopathology and Plant Protection, 50, pp. 228-238. https://doi.org/10.1080/03235408.2017.1287236

Pérez T.E.J., Bernal, C.A., Milanés, V.P., Leiva, M.M., Sierra, R.Y. and Cupull, S.R., 2017. Actividad antagónica de Trichoderma harzianum Rifai sobre el agente causal del tizón del arroz (Pyricularia grisea Sacc.). Centro Agrícola, 44, pp. 13-19. http://cagricola.uclv.edu.cu/index.php/es/volumen-44-2017/numero-3-2017

Pincay, A., Noboa, M., Viera, W., Herrera, K., León, A. and Jackson, T., 2021. Evaluación in vitro del potencial antagonista de Trichoderma sp. y hongos endófitos de mora (Rubus glaucus Benth) para el control de Botrytis cinerea. Journal of Science and Research, 6, pp. 109-124. https://doi.org/10.5281/zenodo.4917695

Rifai, M.A. 1969. A revision of the genus. Trichoderma. Mycological Papers, 116, pp. 1-56.

Rivera, M.W., Meneses-Montero, K., Zúniga-Vega, C. and Brenes-Madriz, J.A., 2016. Antagonismo de Trichoderma sp. ante el patógeno Stromatinia cepivora en el cultivo de cebolla. Revista Tecnología en Marcha, 29, pp. 22-30. http://dx.doi.org/10.18845/tm.v29i7.2702

Rodríguez, I.C. y Flores, J., 2018. Capacidad antagónica in vitro de Trichoderma spp. frente a Rhizoctonia solani Kuhn y Fusarium verticillioides Nirenberg. Bioagro, 30, pp. 49-58. https://revistas.uclave.org/index.php/bioagro/article/view/2710/1693

Rodríguez-García, D. y Wang-Wong, A., 2020. Efectividad a nivel in-vitro de Trichoderma spp. Nativos e importados contra Fusarium oxysporum. Agronomía Costarricense, 44, pp. 109-125. http://dx.doi.org/10.15517/rac.v44i2.43096

Rodríguez, M del C.H., Evans, H.C., de Abreu, L.M., de Macedo, D.M., Ndacnou, M.K., Bekele, K.B. and Barreto, R.W., 2021. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Scientific reports, 11, pp. 2-31. http://dx.doi.org/10.1038/s41598-021-84111-1

Romero-Rosales, T., Acuña-Soto, J., Azuara-Domínguez, A., Lázaro-Dzul, M.A., Monteón-Ojeda, A., Vargas-Madriz, H. and Secundino-Eusebio, Y., 2021. Identification and in vitro antagonism evaluation of native strains of Trichoderma spp. On phytopathogenic fungi associated with chalice spot in Jamaica (Hibiscus sabdariffa L.). Tropical and Subtropical Agroecosystems, 24, pp. 1-10. http://dx.doi.org/10.56369/tsaes.3518

Safari, M.M.R., Jahangiri, B., Kulus, D., Tymoszuk, A. and Kaviani, B., 2022. Endophytic fungi as potential biocontrol agents against Rhizoctonia solani JG Kühn, the causal agent of Rice Sheath Blight Disease. Biology, 11, pp. 1-15. https://doi.org/10.3390/biology11091282

Samaniego-Fernández, L.M., Harouna, M., Corbea, O.C., Rondón-Castillo, A.J. and Placeres-Espinosa, I., 2018. Aislamiento, identificación y evaluación de cepas autóctonas de Trichoderma spp. antagonistas de patógenos del suelo. Revista de Protección Vegetal, 33, pp. 1-11. http://scielo.sld.cu/pdf/rpv/v33n3/2224-4697-rpv-33-03-e02.pdf

Samuels, G.J. and Hebbar, P.K., 2015. Trichoderma: Identification and agricultural applications. The American Phytophatological Society Saint Paul, Minnesota, USA: APS Press. https://my.apsnet.org/APSStore/Product-Detail.aspx?WebsiteKey=2661527A-8D44-496C-A730-8CFEB6239BE7&iProductCode=44846 Fecha de consulta: 29 de noviembre de 2022.

Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., LeipeMcveigh, D.R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J.P., Sun, L., Turner, S. and Karsch-Mizrachi, I., 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020, p.baaa062. http://doi.org/10.1093/database/baaa062

Singh, O.P., and Jain, A.K., 2011. Trichoderma as Biocontrol Agent for Disease Management. In: Prasad D. and Sharma R. (eds). Potential Plant Protection Strategies. I K International Publishing House. New Delhi. pp. 433-446.

Singh, S. and Balodi, R., 2021. Bio-management of soil borne pathogens infesting cucumber (Cucumis sativus L.) under protected cultivation system. Biological Control, 157, pp. 104569. https://doi.org/10.1016/j.biocontrol.2021.104569

Stefanova, M., Leiva, A., Larrinaga, L.J. and Coronado, M.F., 1999. Actividad metabólica de cepas de Trichoderma spp. para el control de hongos fitopatógenos del suelo. Revista Facultad de Agronomía, 16, pp. 509-516. https://produccioncientificaluz.org/index.php/agronomia/article/view/26280

Sumida, C.H., Daniel, J.F.S. Araujod, A.P.C.S., Peitl, D.C., Abreu, L.M. Dekker, R.F.H. and Canteri M., 2018. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants. Biocontrol Science and Technology, 28, pp. 142-156. https://doi.org/10.1080/09583157.2018.1430743

Tapwal, A., Thakur, G., Chandra, S. and Tyagi, A., 2015. In-vitro evaluation of Trichoderma species against seed borne pathogens. International Journal of Biological and Chemical Sciences, 1, pp. 14-19.

Troian, R.F., Steindorff, A.S., Ramada, M.H.S. Arruda, W. and Ulhoa, C.J., 2014. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnology Letters, 36, pp. 2095-2101. https://doi.org/10.1007/s10529-014-1583-5

Vargas-Hoyos, H.A. and Gilchrist, E.R., 2015. Producción de enzimas hidrolíticas y actividad antagónica de Trichoderma asperellum sobre dos cepas de Fusarium aisladas de cultivos de tomate (Solanum lycopersicum). Revista Mexicana de Micología, 42, pp. 9-16. https://scientiafungorum.org.mx/index.php/micologia/issue/view/133

Verma, D.K., 2019. Mycrobiology for sustainable Agriculture, soil health, and environmental protection. In. V. Kumar, Verma, D.K. Pandey, A.K. and Srivastava, S. (Eds.). Trichoderma spp.: Identification and characterization for phatogenic control and its potential application. Apple Academic Press. USA. pp. 223-258. https://doi.org/10.1201/9781351247061

Vinale, F., Sivasithamparam, K. Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., Woo S.L. and Lorito, M., 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72, pp. 80-86. https://doi.org/10.1016/j.pmpp.2008.05.005

Vinale, F., Sivasithamparam, K.S., Ghisalberti, E.L., Woo, S.L., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Ruocco, M., Lanzuise, E., Manganiello, G. and Lorito, M., 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8, pp. 127-139 https://doi.org/10.2174/1874437001408010127

Weindling, R., 1932 Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 22(10), pp.837-845.

Weindling, R., 1934. Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology, 24, pp. 1153-1179.

Zelaya-Molina, L.X., Chávez-Díaz, I.F., de los Santos-Villalobos, S., Cruz-Cárdenas, C.I., Ruíz-Ramírez, SS. and Rojas-Anaya, E., 2022. Control biológico de plagas en la agricultura mexicana. Revista Mexicana de Ciencias Agrícolas, 13, pp. 29-79 https://doi.org/10.29312/remexca.v13i27.3251

Zhang, S., Xu, B., Zhang, J. and Gan, Y., 2018. Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathgens. Pesticide Biochemistry and Physiology, 147, pp. 59-66. https://doi.org/10.1016/j.pestbp.2018.02.006




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.59145

DOI: http://dx.doi.org/10.56369/tsaes.5914



Copyright (c) 2025 Daniel Ruiz Juárez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.