SYNERGISTIC POTENTIAL OF GRAFTING AND COPPER NANOPARTICLES IN TOMATO (Solanum lycopersicum L.) HYBRIDS WITH DEFICIT IRRIGATION
Abstract
Keywords
Full Text:
PDFReferences
Abdulaziz, A.-H., Abdulrasoul, A.-O., Thabet, A., Hesham, A.-R., Khadejah, A., Saad, M. and Abdullah, O., 2017. Tomato grafting impacts on yield and fruit quality under water stress conditions. Journal of Experimental Biology and Agricultural Sciences, 5(Spl-1-SAFSAW), pp.136–147. https://doi.org/10.18006/2017.5(spl-1-safsaw).s136.s147
Agbna, G.H.D., Dongli, S., Zhipeng, L., Elshaikh, N.A., Guangcheng, S. and Timm, L.C., 2017. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae, 222(May), pp.90–101. https://doi.org/10.1016/j.scienta.2017.05.004
Al-Harbi, A., Hejazi, A. and Al-Omran, A., 2017. Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences, [online] 24(6), pp.1274–1280. https://doi.org/10.1016/j.sjbs.2016.01.005
Al-Harbi, A.R., Al-Omran, A.M. and Alharbi, K., 2018. Grafting improves cucumber water stress tolerance in Saudi Arabia. Saudi Journal of Biological Sciences, [online] 25(2), pp.298–304. https://doi.org/10.1016/j.sjbs.2017.10.025
Al-Harbi, A.R., Al-Omran, A.M., Alqardaeai, T.A., Abdel-Rassak, H.S., Alharbi, K.R., Obadi, A. and Saad, M.A., 2018. Grafting affects tomato growth, productivity, and water use efficiency under different water regimes. Journal of Agricultural Science and Technology, 20(6), pp.1227–1241.
Alkhateeb, O.A., Ali, M.A.A., Abdou, A.H., Abdelaal, K. and El-Azm, N.A.I.A., 2024. Integrating soil mulching and subsurface irrigation for optimizing deficit irrigation effectiveness as a water-rationing strategy in tomato production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), pp.1–23. https://doi.org/10.15835/nbha52113514
Allen, R., Pereira, L., Raes, D. and Smith, M., 2006. Evapotranspiración del cultivo en condiciones estándar. Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos. ESTUDIO FAO RIEGO Y DRENAJE 56., [online] (56), p.48. Available at: http://www.fao.org/tempref/docrep/fao/009/x0490s/x0490s02.pdf
Andrade, M.C., da Silva, A.A., Conrado, T.V., Maluf, W.R., Andrade, T.M. and de Oliveira, C.M., 2014. Combining ability of tomato lines in saladette-type hybrids. Bragantia, 73(3), pp.237–245. https://doi.org/10.1590/1678-4499.0039
Anwar, R., Fatima, T. and Mattoo, A.K., 2019. Tomatoes: A model crop of solanaceous plants. Oxford Research Encyclopedia of Environmental Science, https://doi.org/10.1093/acrefore/9780199389414.013.223
Bogale, A., Nagle, M., Latif, S., Aguila, M. and Müller, J., 2016. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Scientia Horticulturae, [online] 213, pp.115–124. https://doi.org/10.1016/j.scienta.2016.10.029
Bogoescu, M., Doltu, M., Iordache, B., Vintila, M., Sora, D. and Mohora, A., 2011. The grafting tomatoes crop - An alternative for vegetable growers. UASVM Horticulture, 68(1), pp.215–221. https://doi.org/10.15835/buasvmcn-hort:6937
Broadley, M., Brown, P., Cakmak, I., Zed, R. and Zhao, F., 2012. Functions of Nutrients: Micronutrients. In: P. Marschner, ed. Mineral Nutrition of Higher Plants, 3rd ed. pp.191–248.
Campbell, J.K., Canene-Adams, K., Lindshield, B.L., Boileau, T.W.M., Clinton, S.K. and Erdman, J.W., 2004. Tomato phytochemicals and prostate cancer risk. Journal of Nutrition, 134(12 SUPPL.), pp.3486–3492. https://doi.org/10.1093/jn/134.12.3486s
Carrillo-Rodríguez, J.C., Chávez-Servia, J.L., Lobato-Ortiz, R. and Perales-Segovia, C., 2019. Generation and evaluation of heterogeneous genotypes of tomato for small-scale farmers. Journal of Plant Breeding and Crop Science, 11(3), pp.91–99. https://doi.org/10.5897/jpbcs2018.0782
Castel Sánchez, J. and González Altozano, P., 2003. Riego deficitario controlado en “Clementina de Nules”. I: efectos sobre la producción y la calidad de la fruta. Spanish Journal of Agricultural Research, 1(2), pp.81–92.
Chai, Q., Gan, Y., Zhao, C., Xu, H.L., Waskom, R.M., Niu, Y. and Siddique, K.H.M., 2016. Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for Sustainable Development, [online] 36(1), pp.1–21. https://doi.org/10.1007/s13593-015-0338-6
Cortez, M. del P.M. and Montejo, N.C., 2020. Agronomic behavior of six saladette tomato hybrids grown under shade mesh. Annual Research & Review in Biology, 35(8), pp.45–52. https://doi.org/10.9734/arrb/2020/v35i830258
Coyago-Cruz, E., Meléndez-Martínez, A.J., Moriana, A., Girón, I.F., Martín-Palomo, M.J., Galindo, A., López-Pérez, D., Torrecillas, A., Beltrán-Sinchiguano, E. and Corell, M., 2019. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agricultural Water Management, [online] 213(October 2018), pp.212–221. https://doi.org/10.1016/j.agwat.2018.10.020
Cui, J., Shao, G., Lu, J., Keabetswe, L. and Hoogenboom, G., 2020. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Scientia Agricola, 77(2). https://doi.org/10.1590/1678-992x-2018-0390
Cumplido-Nájera, C.F., González-Morales, S., Ortega-Ortíz, H., Cadenas-Pliego, G., Benavides-Mendoza, A. and Juárez-Maldonado, A., 2019. The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245, pp.82–89. https://doi.org/10.1016/j.scienta.2018.10.007
Davis, M., Stone, A., Selman, L., Merscher, P. and Garrett, A., 2024. Grafting onto Tomato Rootstocks Improves Outcomes for Dry-farmed Tomato. HortTechnology, 34, pp.313–321. https://doi.org/10.21273/HORTTECH05412-24
Deng, C., Protter, C.R., Wang, Y., Borgatta, J., Zhou, J., Wang, P., Goyal, V., Brown, H.J., Rodriguez-Otero, K., Dimkpa, C.O., Hernandez, R., Hamers, R.J., White, J.C. and Elmer, W.H., 2023. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. Science of The Total Environment, [online] 905, p.167799. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.167799
Djidonou, D., Zhao, X., Simonne, E.H., Koch, K.E. and Erickson, J.E., 2013. Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience, 48(4), pp.485–492. https://doi.org/10.21273/hortsci.48.4.485
Faisal, M., Kamran, M., Arshad, A., Maqsood, M.J., Rehman, K., Usman, S. and Farooq, P., 2024. Mitigate the Impact of Various Abiotic Stress by Using Grafting in Tomato (Solanum lycopersicum L.) and Other Vegetables: A Comprehensive Review. Asian Journal of Research in Crop Science, 9(2), pp.35–43. https://doi.org/10.9734/ajrcs/2024/v9i2265
Faraz, A., Faizan, M., Hayat, S. and Alam, P., 2022. Foliar application of copper oxide nanoparticles increases the photosynthetic efficiency and antioxidant activity in Brassica juncea. Journal of Food Quality, 2022, pp.1–10. https://doi.org/10.1155/2022/5535100
Flores, J., Ojeda, B.W., López, I. and Rojano, a I., 2007. Requerimientos de riego para tomate de invernadero. Terra Latinoamericana, 25(2), pp.127–134.
Gaion, L.A., Braz, L.T. and Carvalho, R.F., 2018. Grafting in Vegetable Crops: A Great Technique for Agriculture. International Journal of Vegetable Science, [online] 24(1), pp.85–102. https://doi.org/10.1080/19315260.2017.1357062
Gebreigziabher, E.T. and Assefa, N.F., 2024. Effect of Phenological Basis Deficit Irrigation on Yield and Water Use Efficiency of Tomato (Solanum lycopersicon L.). International Journal on Food, Agriculture and Natural Resources, 5(2), pp.118–123. https://doi.org/10.46676/ij-fanres.v5i2.324
Giovannetti, M., Avio, L., Barale, R., Ceccarelli, N., Cristofani, R., Iezzi, A., Mignolli, F., Picciarelli, P., Pinto, B., Reali, D., Sbrana, C. and Scarpato, R., 2012. Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. British Journal of Nutrition, 107(2), pp.242–251. https://doi.org/10.1017/S000711451100290X
Guo, X., Zhao, J., Wang, R., Zhang, H., Xing, B., Naeem, M., Yao, T., Li, R., Xu, R., Zhang, Z. and Wu, J., 2021. Effects of graphene oxide on tomato growth in different stages. Plant Physiology and Biochemistry, [online] 162(March), pp.447–455. https://doi.org/10.1016/j.plaphy.2021.03.013
Hafeez, A., Razzaq, A., Mahmood, T. and Jhanzab, M.J., 2015. Potential of copper nanoparticles to increase growth and yield of wheat. Journal of Nanoscience with Advanced Technology, 1(1), pp.6–11. https://doi.org/10.24218/jnat.2015.02
Halli, H.M., Angadi, S., Govindasamy, P., Madar, R., Sannagoudar, M.S., El-Sabrout, A.M., Alataway, A., Dewidar, A.Z. and Elansary, H.O., 2021. Integrated effect of deficit irrigation and sowing methods on weed dynamics and system productivity of maize–cowpea sequence on vertisols. Agronomy, 11(4), pp.1–16. https://doi.org/10.3390/AGRONOMY11040808
He, Y., Wang, J., Yang, J., Bai, P., Feng, J., Wu, Y., Yu, J., Hu, L. and Liao, W., 2024. Enhancement of Tomato Fruit Quality Through Moderate Water Deficit. Foods, 13(22). https://doi.org/10.3390/foods13223540
Hernández-Hernández, H., González-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G. and Juárez-Maldonado, A., 2018. Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules, 23(1). https://doi.org/10.3390/molecules23010178
Hernández-Hernández, H., Quiterio-Gutiérrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Hernández-Fuentes, A.D., De La Fuente, M.C., Valdés-Reyna, J. and Juárez-Maldonado, A., 2019. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants, 8(10). https://doi.org/10.3390/plants8100355
Janaharshini, R., Velmurugan, M., Indu Rani, C., Venkatachalam, S.R. and Saravanan, P.A., 2024. Vegetables grafting: Green surgical fusion to combat biotic and abiotic stresses. Plant Science Today, 11(4), pp.1429–1439. https://doi.org/10.14719/pst.4065
Jenkins, T., Cowan, J., Rivard, C.L. and Pliakoni, E.D., 2022. Effect of rootstock on ‘Tasti-Lee’ tomato yield and fruit quality in a high tunnel production system. HortScience, 57(10), pp.1235–1241. https://doi.org/10.21273/hortsci16634-22
Khapte, P.S., Kumar, P., Burman, U. and Kumar, P., 2019. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Scientia Horticulturae, 248(January), pp.256–264. https://doi.org/10.1016/j.scienta.2019.01.006
Koleška, I., Hasanagi?, D., Todorovi?, V., Murti?, S. and Maksimovi?, I., 2018. Grafting influence on the weight and quality of tomato fruit under salt stress. Annals of Applied Biology, 172(2), pp.187–196. https://doi.org/10.1111/aab.12411
León-silva, S., Arrieta-cortes, R., Fernández-luqueño, F. and López-valdez, F., 2018. Agricultural Nanobiotechnology. Agricultural Nanobiotechnology. https://doi.org/10.1007/978-3-319-96719-6
Lira-Saldivar, R.H., Argüello, B.M., Villarreal, G.D. los S. and Reyes, I.V., 2018. Potencial de la nanotecnología en la agricultura. Acta Universitaria, 28(2), pp.9–24. https://doi.org/10.15174/au.2018.1575
Lopez-Galarza, S., San Bautista, A., Perez, D.M., Miguel, A., Baixauli, C., Pascual, B., Maroto, J. V. and Guardiola, J.L., 2015. Effects of grafting and cytokinin-induced fruit setting on colour and sugar-content traits in glasshouse-grown triploid watermelon. Journal of Horticultural Science and Biotechnology, 79(6), pp.971–976. https://doi.org/10.1080/14620316.2004.11511875
Lopez-Lima, D., Mtz-Enriquez, A.I., Carrión, G., Basurto-Cereceda, S. and Pariona, N., 2021. The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae, 277(September 2020). https://doi.org/10.1016/j.scienta.2020.109810
López-Vargas, E.R., Ortega-Ortíz, H., Cadenas-Pliego, G., Romenus, K. de A., de la Fuente, M.C., Benavides-Mendoza, A. and Juárez-Maldonado, A., 2018. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Applied Sciences, 8(7), pp.1–15. https://doi.org/10.3390/app8071020
Lovelli, S., Potenza, G., Castronuovo, D., Perniola, M. and Candido, V., 2017. Yield, quality and water use efficiency of processing tomatoes produced under different irrigation regimes in Mediterranean environment. Italian Journal of Agronomy, 12(1), pp.17–24. https://doi.org/10.4081/ija.2016.795
Lu, J., Shao, G., Cui, J., Wang, X. and Keabetswe, L., 2019. Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis. Agricultural Water Management, 222(June 2018), pp.301–312. https://doi.org/10.1016/j.agwat.2019.06.008
Maldonado, W., Valeriano, T.T.B. and de Souza Rolim, G., 2019. EVAPO: A smartphone application to estimate potential evapotranspiration using cloud gridded meteorological data from NASA-POWER system. Computers and Electronics in Agriculture, [online] 156(2019), pp.187–192. https://doi.org/10.1016/j.compag.2018.10.032
Martínez-Damián, M.T., Cano-Hernández, R., Del Carmen Moreno-Pérez, E., Del Castillo, F.S. and Cruz-Álvarez, O., 2018. Effect of preharvest growth bioregulators on physicochemical quality of saladette tomato. Revista Chapingo, Serie Horticultura, 25(1), pp.29–43. https://doi.org/10.5154/r.rchsh.2018.06.013
Melnyk, C.W., Schuster, C., Leyser, O. and Meyerowitz, E.M., 2015. A developmental framework for graft formation and vascular reconnection in arabidopsis thaliana. Current Biology, [online] 25(10), pp.1306–1318. https://doi.org/10.1016/j.cub.2015.03.032
Miloševi?, T. and Miloševi?, N., 2022. Fruit size and main chemical properties of european plums (Prunus domestica L.) as influenced by grafting on seedlings of commercial cultivars. Erwerbs-Obstbau, 64, pp.183–190. https://doi.org/10.1007/s10341-021-00615-0
Morales-Espinoza, M.C., Cadenas-Pliego, G., Pérez-Alvarez, M., Hernández-Fuentes, A.D., De La Fuente, M.C., Benavides-Mendoza, A., Valdés-Reyna, J. and Juárez-Maldonado, A., 2019. Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under nacl stress. Molecules, 24(17). https://doi.org/10.3390/molecules24173030
Mozafarian, M., Ismail, N.S.B. and Kappel, N., 2020. Rootstock effects on yield and some consumer important fruit quality parameters of eggplant cv. “Madonna” under protected cultivation. Agronomy, 10(9). https://doi.org/10.3390/AGRONOMY10091442
Nagata, M. and Yamashita, I., 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Japanese Society for Food Science and Technology, 39(10), pp.925–928. https://doi.org/10.3136/nskkk1962.39.925
Noreldin, T., Ouda, S., Mounzer, O. and Abdelhamid, M.T., 2015. CropSyst model for wheat under deficit irrigation using sprinkler and drip irrigation in sandy soil. Journal of Water and Land Development, 26(1), pp.57–64. https://doi.org/10.1515/jwld-2015-0016
Pal, S., Zhao, J., Khan, A., Yadav, N.S., Batushansky, A., Barak, S., Rewald, B., Fait, A., Lazarovitch, N. and Rachmilevitch, S., 2016. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports, 6(November), pp.1–13. https://doi.org/10.1038/srep39321
Palada, M.C. and Wu, D.L., 2007. Increasing off-season Tomato production using grafting technology for peri-urban agriculture in Southeast Asia. Acta Horticulturae, 742(October 2003), pp.125–132. https://doi.org/10.17660/actahortic.2007.742.17
Patanè, C., Tringali, S. and Sortino, O., 2011. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae, 129(4), pp.590–596. https://doi.org/10.1016/j.scienta.2011.04.030
Pogonyi, Á., Pék, Z., Helyes, L. and Lugasi, A., 2005. Effect of grafting on the tomato’s yield, quality and main fruit components in spring forcing. Acta Alimentaria, 34(4), pp.453–462. https://doi.org/10.1556/AAlim.34.2005.4.12
Prakash, G., Chavan, M.L., Jagadeesha, R.C., Jayappa, J. and Shankarappa, K.S., 2019. Screening of Tomato Genotypes for Various Yield and Quality Parameters under Regulated Deficit Irrigations in Northern Dry Zone of Karnataka. International Journal of Current Microbiology and Applied Sciences, 8(02), pp.2275–2283. https://doi.org/10.20546/ijcmas.2019.802.265
Priyanka, N., Geetha, N., Ghorbanpour, M. and Venkatachalam, P., 2019. Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: present status and future prospects. In: Advances in Phytonanotechnology. [online] Elsevier Inc. pp.183–201. https://doi.org/10.1016/b978-0-12-815322-2.00007-9
Rajput, V.D., Minkina, T., Suskova, S., Mandzhieva, S., Tsitsuashvili, V., Chapligin, V. and Fedorenko, A., 2018. Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review. BioNanoScience, 8(1), pp.36–42. https://doi.org/10.1007/s12668-017-0466-3
Raliya, R., Saharan, V., Dimkpa, C. and Biswas, P., 2018. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry, 66(26), pp.6487–6503. https://doi.org/10.1021/acs.jafc.7b02178
Ramírez-Jiménez, J.A., Barrera-Sánchez, C.F. and Córdoba-Gaona, O. de J., 2020. Yield and yield components of tomato grafted plants in the high Andean region of Colombia. Revista Colombiana De Ciencias Hortícolas, 14(3), pp.375–384.
Ramírez-Jiménez, J.A., Ribeiro Marchiori, P.E. and Córdoba-Gaona, O. de J., 2021. Grafting effect on photosynthetic activity and yield of tomato under a plastic house in Colombia. Revista Facultad Nacional de Agronomía Medellín, 74(3), pp.9621–9629. https://doi.org/https://doi.org/10.15446/rfnam.v74n3.93102
Reshma, A., Sadarunnisa, S., Syamsundar, R.P., Tanuja, P.B., Naga, M.K. V and Padmaja, V. V, 2024. Effect of grafting on growth, yield, quality and nutrient uptake in tomato. International Journal of Advanced Biochemistry Research, 8(10), pp.361–367.
Ripoll, J., Urban, L., Brunel, B. and Bertin, N., 2016. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Journal of Plant Physiology, [online] 190, pp.26–35. https://doi.org/10.1016/j.jplph.2015.10.006
Schwarz, D., Öztekin, G.B., Tüzel, Y., Brückner, B. and Krumbein, A., 2013. Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Scientia Horticulturae, [online] 149, pp.70–79. https://doi.org/10.1016/j.scienta.2012.06.013
Singh, H., Kumar, P., Kumar, A., Kyriacou, M.C., Colla, G. and Rouphael, Y., 2020. Grafting tomato as a tool to improve salt tolerance. Agronomy, 10(2), pp.1–21. https://doi.org/10.3390/agronomy10020263
Soare, R., Dinu, M. and Babeanu, C., 2018. The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Horticultural Science, 45(2), pp.76–82. https://doi.org/10.17221/214/2016-HORTSCI
Sora, D., Doltu, M., Dr?ghici, E.M. and Bogoescu, M.I., 2019. Effect of grafting on tomato fruit quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), pp.1246–1251. https://doi.org/10.15835/nbha47411719
Steiner, A.A., 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, [online] 15(2), pp.134–154. https://doi.org/10.1007/BF01347224
Tahi, H., Wahbi, S., Wakrim, R., Aganchich, B., Serraj, R. and Centritto, M., 2007. Water relations, photosynthesis, growth and water-use efficiency in tomato plants subjected to partial rootzone drying and regulated deficit irrigation. Plant Biosystems, 141(2), pp.265–274. https://doi.org/10.1080/11263500701401927
Takács, S., Pék, Z., Csányi, D., Daood, H.G., Szuvandzsiev, P., Palotás, G. and Helyes, L., 2020. Influence of water stress levels on the yield and lycopene content of tomato. Water, 12(8), pp.1–17. https://doi.org/10.3390/W12082165
Turhan, A., Kuscu, H., Ozmen, N., Aydinol, P., Seniz, V. and Demir, A.O., 2016. Effects of soil water deficit at different growth stages on yield and quality of processing tomato. Acta Horticulturae, 1145, pp.85–91. https://doi.org/10.17660/ActaHortic.2016.1145.13
Turhan, A., Ozmen, N., Kuscu, H., Serbeci, M.S. and Seniz, V., 2012. Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Horticulture Environment and Biotechnology, 53(4), pp.336–341. https://doi.org/10.1007/s13580-012-0034-2
USDA, 2005. Shipping Point and Market Shipping Point and Market Inspection Instructions for Tomatoes. Agricultural Marketing Service, (December).
Voronkova, I. and Rzayeva, V., 2024. Germination, survival and preservation of tomatoes when using the technological method of grafting in protected soil. Agrarian science, 1, pp.173–176. https://doi.org/10.32634/0869-8155-2024-385-8-173-176
Waliszewski, K.N. and Blasco, G., 2010. Propiedades nutraceúticas del licopeno. Salud Publica de Mexico, 52(3), pp.254–265.
Wang, J., Li, Y. and Niu, W., 2020. Deficit alternate drip irrigation increased root-soil-plant interaction, tomato yield, and quality. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030781
Wu, Y., Yan, S., Fan, J., Zhang, F., Xiang, Y., Zheng, J. and Guo, J., 2021. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, [online] 275(January 2020), p.109710. https://doi.org/10.1016/j.scienta.2020.109710
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.58826
DOI: http://dx.doi.org/10.56369/tsaes.5882
Copyright (c) 2025 Luis Eduardo Tamayo-Ruiz, Efraín Neri-Ramírez, Marcelino Cabrera-De la Fuente, Mario Rocandio-Rodríguez, Yolanda Del Rocío Moreno-Ramírez, Rafael Delgado-Martínez

This work is licensed under a Creative Commons Attribution 4.0 International License.