SYNERGISTIC POTENTIAL OF GRAFTING AND COPPER NANOPARTICLES IN TOMATO (Solanum lycopersicum L.) HYBRIDS WITH DEFICIT IRRIGATION

Luis Eduardo Tamayo-Ruiz, Efraín Neri-Ramírez, Marcelino Cabrera-de La Fuente, Mario Rocandio-Rodríguez, Yolanda Del Rocío Moreno-Ramírez, Rafael Delgado-Martínez

Abstract


Background: Tomatoes, as a nutraceutical food abundant in vitamins and antioxidants, play a significant role in reducing the risk of various diseases. Integrating advanced agricultural practices, such as using nanoparticles instead of traditional fertilizers, alongside techniques like grafting and deficit irrigation, offers a promising approach to improving their overall quality. Nevertheless, addressing the challenge of water scarcity remains a critical concern in modern agriculture. Objective: To evaluate the growth, yield, and fruit quality of grafted tomato hybrids under deficit irrigation conditions, along with the application of copper nanoparticles. Methodology: This research analyzes the effect of grafting, grafting + 100 ppm CuNPs (copper nanoparticles), and 100 ppm CuNPs on the growth, yield, and quality of Saladette-type tomato hybrids (Solanum lycopersicum L.) Aquiles, Cuauhtémoc, Mesías, and Moctezuma under deficit irrigation (DI) conditions, DI75, and DI50. The variables included plant height (PH), stem diameter (SD), leaf area (LA), average fruit weight (AFW), total fruit weight (TFW), and water use efficiency (WUE). The general fruit quality parameters were polar diameter (PD), equatorial diameter (ED), fruit firmness (FF), total soluble solids (TSS) content, β-carotene, and lycopene content. Results: The Aquiles hybrid achieved a remarkable AFW. The Cuauhtémoc hybrid showed higher β-carotene and lycopene contents. Grafted plants promoted higher AFW, TFW, WUE, and FF. The use of CuNPs induced a higher TSS content, β-carotene, and lycopene. The DI50 affected PH, but WUE was higher without TFW changes, increasing TSS and lycopene content. Implications: The loss of fruit quality in grafted tomato plants is compensated using CuNPs and deficit irrigation. Conclusion: Grafting is a highly effective method for increasing tomato yield, while the application of CuNPs significantly enhances the fruit's internal quality. Furthermore, employing deficit irrigation at 50% (DI50) maximizes water use efficiency, improving specific quality attributes without negatively impacting overall yield.

Keywords


agronomic management; carotenoids; water scarcity; nanotechnology; tomato quality

Full Text:

PDF

References


Abdulaziz, A.-H., Abdulrasoul, A.-O., Thabet, A., Hesham, A.-R., Khadejah, A., Saad, M. and Abdullah, O., 2017. Tomato grafting impacts on yield and fruit quality under water stress conditions. Journal of Experimental Biology and Agricultural Sciences, 5(Spl-1-SAFSAW), pp.136–147. https://doi.org/10.18006/2017.5(spl-1-safsaw).s136.s147

Agbna, G.H.D., Dongli, S., Zhipeng, L., Elshaikh, N.A., Guangcheng, S. and Timm, L.C., 2017. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae, 222(May), pp.90–101. https://doi.org/10.1016/j.scienta.2017.05.004

Al-Harbi, A., Hejazi, A. and Al-Omran, A., 2017. Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences, [online] 24(6), pp.1274–1280. https://doi.org/10.1016/j.sjbs.2016.01.005

Al-Harbi, A.R., Al-Omran, A.M. and Alharbi, K., 2018. Grafting improves cucumber water stress tolerance in Saudi Arabia. Saudi Journal of Biological Sciences, [online] 25(2), pp.298–304. https://doi.org/10.1016/j.sjbs.2017.10.025

Al-Harbi, A.R., Al-Omran, A.M., Alqardaeai, T.A., Abdel-Rassak, H.S., Alharbi, K.R., Obadi, A. and Saad, M.A., 2018. Grafting affects tomato growth, productivity, and water use efficiency under different water regimes. Journal of Agricultural Science and Technology, 20(6), pp.1227–1241.

Alkhateeb, O.A., Ali, M.A.A., Abdou, A.H., Abdelaal, K. and El-Azm, N.A.I.A., 2024. Integrating soil mulching and subsurface irrigation for optimizing deficit irrigation effectiveness as a water-rationing strategy in tomato production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), pp.1–23. https://doi.org/10.15835/nbha52113514

Allen, R., Pereira, L., Raes, D. and Smith, M., 2006. Evapotranspiración del cultivo en condiciones estándar. Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos. ESTUDIO FAO RIEGO Y DRENAJE 56., [online] (56), p.48. Available at: http://www.fao.org/tempref/docrep/fao/009/x0490s/x0490s02.pdf

Andrade, M.C., da Silva, A.A., Conrado, T.V., Maluf, W.R., Andrade, T.M. and de Oliveira, C.M., 2014. Combining ability of tomato lines in saladette-type hybrids. Bragantia, 73(3), pp.237–245. https://doi.org/10.1590/1678-4499.0039

Anwar, R., Fatima, T. and Mattoo, A.K., 2019. Tomatoes: A model crop of solanaceous plants. Oxford Research Encyclopedia of Environmental Science, https://doi.org/10.1093/acrefore/9780199389414.013.223

Bogale, A., Nagle, M., Latif, S., Aguila, M. and Müller, J., 2016. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Scientia Horticulturae, [online] 213, pp.115–124. https://doi.org/10.1016/j.scienta.2016.10.029

Bogoescu, M., Doltu, M., Iordache, B., Vintila, M., Sora, D. and Mohora, A., 2011. The grafting tomatoes crop - An alternative for vegetable growers. UASVM Horticulture, 68(1), pp.215–221. https://doi.org/10.15835/buasvmcn-hort:6937

Broadley, M., Brown, P., Cakmak, I., Zed, R. and Zhao, F., 2012. Functions of Nutrients: Micronutrients. In: P. Marschner, ed. Mineral Nutrition of Higher Plants, 3rd ed. pp.191–248.

Campbell, J.K., Canene-Adams, K., Lindshield, B.L., Boileau, T.W.M., Clinton, S.K. and Erdman, J.W., 2004. Tomato phytochemicals and prostate cancer risk. Journal of Nutrition, 134(12 SUPPL.), pp.3486–3492. https://doi.org/10.1093/jn/134.12.3486s

Carrillo-Rodríguez, J.C., Chávez-Servia, J.L., Lobato-Ortiz, R. and Perales-Segovia, C., 2019. Generation and evaluation of heterogeneous genotypes of tomato for small-scale farmers. Journal of Plant Breeding and Crop Science, 11(3), pp.91–99. https://doi.org/10.5897/jpbcs2018.0782

Castel Sánchez, J. and González Altozano, P., 2003. Riego deficitario controlado en “Clementina de Nules”. I: efectos sobre la producción y la calidad de la fruta. Spanish Journal of Agricultural Research, 1(2), pp.81–92.

Chai, Q., Gan, Y., Zhao, C., Xu, H.L., Waskom, R.M., Niu, Y. and Siddique, K.H.M., 2016. Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for Sustainable Development, [online] 36(1), pp.1–21. https://doi.org/10.1007/s13593-015-0338-6

Cortez, M. del P.M. and Montejo, N.C., 2020. Agronomic behavior of six saladette tomato hybrids grown under shade mesh. Annual Research & Review in Biology, 35(8), pp.45–52. https://doi.org/10.9734/arrb/2020/v35i830258

Coyago-Cruz, E., Meléndez-Martínez, A.J., Moriana, A., Girón, I.F., Martín-Palomo, M.J., Galindo, A., López-Pérez, D., Torrecillas, A., Beltrán-Sinchiguano, E. and Corell, M., 2019. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agricultural Water Management, [online] 213(October 2018), pp.212–221. https://doi.org/10.1016/j.agwat.2018.10.020

Cui, J., Shao, G., Lu, J., Keabetswe, L. and Hoogenboom, G., 2020. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Scientia Agricola, 77(2). https://doi.org/10.1590/1678-992x-2018-0390

Cumplido-Nájera, C.F., González-Morales, S., Ortega-Ortíz, H., Cadenas-Pliego, G., Benavides-Mendoza, A. and Juárez-Maldonado, A., 2019. The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245, pp.82–89. https://doi.org/10.1016/j.scienta.2018.10.007

Davis, M., Stone, A., Selman, L., Merscher, P. and Garrett, A., 2024. Grafting onto Tomato Rootstocks Improves Outcomes for Dry-farmed Tomato. HortTechnology, 34, pp.313–321. https://doi.org/10.21273/HORTTECH05412-24

Deng, C., Protter, C.R., Wang, Y., Borgatta, J., Zhou, J., Wang, P., Goyal, V., Brown, H.J., Rodriguez-Otero, K., Dimkpa, C.O., Hernandez, R., Hamers, R.J., White, J.C. and Elmer, W.H., 2023. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. Science of The Total Environment, [online] 905, p.167799. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.167799

Djidonou, D., Zhao, X., Simonne, E.H., Koch, K.E. and Erickson, J.E., 2013. Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience, 48(4), pp.485–492. https://doi.org/10.21273/hortsci.48.4.485

Faisal, M., Kamran, M., Arshad, A., Maqsood, M.J., Rehman, K., Usman, S. and Farooq, P., 2024. Mitigate the Impact of Various Abiotic Stress by Using Grafting in Tomato (Solanum lycopersicum L.) and Other Vegetables: A Comprehensive Review. Asian Journal of Research in Crop Science, 9(2), pp.35–43. https://doi.org/10.9734/ajrcs/2024/v9i2265

Faraz, A., Faizan, M., Hayat, S. and Alam, P., 2022. Foliar application of copper oxide nanoparticles increases the photosynthetic efficiency and antioxidant activity in Brassica juncea. Journal of Food Quality, 2022, pp.1–10. https://doi.org/10.1155/2022/5535100

Flores, J., Ojeda, B.W., López, I. and Rojano, a I., 2007. Requerimientos de riego para tomate de invernadero. Terra Latinoamericana, 25(2), pp.127–134.

Gaion, L.A., Braz, L.T. and Carvalho, R.F., 2018. Grafting in Vegetable Crops: A Great Technique for Agriculture. International Journal of Vegetable Science, [online] 24(1), pp.85–102. https://doi.org/10.1080/19315260.2017.1357062

Gebreigziabher, E.T. and Assefa, N.F., 2024. Effect of Phenological Basis Deficit Irrigation on Yield and Water Use Efficiency of Tomato (Solanum lycopersicon L.). International Journal on Food, Agriculture and Natural Resources, 5(2), pp.118–123. https://doi.org/10.46676/ij-fanres.v5i2.324

Giovannetti, M., Avio, L., Barale, R., Ceccarelli, N., Cristofani, R., Iezzi, A., Mignolli, F., Picciarelli, P., Pinto, B., Reali, D., Sbrana, C. and Scarpato, R., 2012. Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. British Journal of Nutrition, 107(2), pp.242–251. https://doi.org/10.1017/S000711451100290X

Guo, X., Zhao, J., Wang, R., Zhang, H., Xing, B., Naeem, M., Yao, T., Li, R., Xu, R., Zhang, Z. and Wu, J., 2021. Effects of graphene oxide on tomato growth in different stages. Plant Physiology and Biochemistry, [online] 162(March), pp.447–455. https://doi.org/10.1016/j.plaphy.2021.03.013

Hafeez, A., Razzaq, A., Mahmood, T. and Jhanzab, M.J., 2015. Potential of copper nanoparticles to increase growth and yield of wheat. Journal of Nanoscience with Advanced Technology, 1(1), pp.6–11. https://doi.org/10.24218/jnat.2015.02

Halli, H.M., Angadi, S., Govindasamy, P., Madar, R., Sannagoudar, M.S., El-Sabrout, A.M., Alataway, A., Dewidar, A.Z. and Elansary, H.O., 2021. Integrated effect of deficit irrigation and sowing methods on weed dynamics and system productivity of maize–cowpea sequence on vertisols. Agronomy, 11(4), pp.1–16. https://doi.org/10.3390/AGRONOMY11040808

He, Y., Wang, J., Yang, J., Bai, P., Feng, J., Wu, Y., Yu, J., Hu, L. and Liao, W., 2024. Enhancement of Tomato Fruit Quality Through Moderate Water Deficit. Foods, 13(22). https://doi.org/10.3390/foods13223540

Hernández-Hernández, H., González-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G. and Juárez-Maldonado, A., 2018. Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules, 23(1). https://doi.org/10.3390/molecules23010178

Hernández-Hernández, H., Quiterio-Gutiérrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Hernández-Fuentes, A.D., De La Fuente, M.C., Valdés-Reyna, J. and Juárez-Maldonado, A., 2019. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants, 8(10). https://doi.org/10.3390/plants8100355

Janaharshini, R., Velmurugan, M., Indu Rani, C., Venkatachalam, S.R. and Saravanan, P.A., 2024. Vegetables grafting: Green surgical fusion to combat biotic and abiotic stresses. Plant Science Today, 11(4), pp.1429–1439. https://doi.org/10.14719/pst.4065

Jenkins, T., Cowan, J., Rivard, C.L. and Pliakoni, E.D., 2022. Effect of rootstock on ‘Tasti-Lee’ tomato yield and fruit quality in a high tunnel production system. HortScience, 57(10), pp.1235–1241. https://doi.org/10.21273/hortsci16634-22

Khapte, P.S., Kumar, P., Burman, U. and Kumar, P., 2019. Deficit irrigation in tomato: Agronomical and physio-biochemical implications. Scientia Horticulturae, 248(January), pp.256–264. https://doi.org/10.1016/j.scienta.2019.01.006

Koleška, I., Hasanagi?, D., Todorovi?, V., Murti?, S. and Maksimovi?, I., 2018. Grafting influence on the weight and quality of tomato fruit under salt stress. Annals of Applied Biology, 172(2), pp.187–196. https://doi.org/10.1111/aab.12411

León-silva, S., Arrieta-cortes, R., Fernández-luqueño, F. and López-valdez, F., 2018. Agricultural Nanobiotechnology. Agricultural Nanobiotechnology. https://doi.org/10.1007/978-3-319-96719-6

Lira-Saldivar, R.H., Argüello, B.M., Villarreal, G.D. los S. and Reyes, I.V., 2018. Potencial de la nanotecnología en la agricultura. Acta Universitaria, 28(2), pp.9–24. https://doi.org/10.15174/au.2018.1575

Lopez-Galarza, S., San Bautista, A., Perez, D.M., Miguel, A., Baixauli, C., Pascual, B., Maroto, J. V. and Guardiola, J.L., 2015. Effects of grafting and cytokinin-induced fruit setting on colour and sugar-content traits in glasshouse-grown triploid watermelon. Journal of Horticultural Science and Biotechnology, 79(6), pp.971–976. https://doi.org/10.1080/14620316.2004.11511875

Lopez-Lima, D., Mtz-Enriquez, A.I., Carrión, G., Basurto-Cereceda, S. and Pariona, N., 2021. The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae, 277(September 2020). https://doi.org/10.1016/j.scienta.2020.109810

López-Vargas, E.R., Ortega-Ortíz, H., Cadenas-Pliego, G., Romenus, K. de A., de la Fuente, M.C., Benavides-Mendoza, A. and Juárez-Maldonado, A., 2018. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Applied Sciences, 8(7), pp.1–15. https://doi.org/10.3390/app8071020

Lovelli, S., Potenza, G., Castronuovo, D., Perniola, M. and Candido, V., 2017. Yield, quality and water use efficiency of processing tomatoes produced under different irrigation regimes in Mediterranean environment. Italian Journal of Agronomy, 12(1), pp.17–24. https://doi.org/10.4081/ija.2016.795

Lu, J., Shao, G., Cui, J., Wang, X. and Keabetswe, L., 2019. Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis. Agricultural Water Management, 222(June 2018), pp.301–312. https://doi.org/10.1016/j.agwat.2019.06.008

Maldonado, W., Valeriano, T.T.B. and de Souza Rolim, G., 2019. EVAPO: A smartphone application to estimate potential evapotranspiration using cloud gridded meteorological data from NASA-POWER system. Computers and Electronics in Agriculture, [online] 156(2019), pp.187–192. https://doi.org/10.1016/j.compag.2018.10.032

Martínez-Damián, M.T., Cano-Hernández, R., Del Carmen Moreno-Pérez, E., Del Castillo, F.S. and Cruz-Álvarez, O., 2018. Effect of preharvest growth bioregulators on physicochemical quality of saladette tomato. Revista Chapingo, Serie Horticultura, 25(1), pp.29–43. https://doi.org/10.5154/r.rchsh.2018.06.013

Melnyk, C.W., Schuster, C., Leyser, O. and Meyerowitz, E.M., 2015. A developmental framework for graft formation and vascular reconnection in arabidopsis thaliana. Current Biology, [online] 25(10), pp.1306–1318. https://doi.org/10.1016/j.cub.2015.03.032

Miloševi?, T. and Miloševi?, N., 2022. Fruit size and main chemical properties of european plums (Prunus domestica L.) as influenced by grafting on seedlings of commercial cultivars. Erwerbs-Obstbau, 64, pp.183–190. https://doi.org/10.1007/s10341-021-00615-0

Morales-Espinoza, M.C., Cadenas-Pliego, G., Pérez-Alvarez, M., Hernández-Fuentes, A.D., De La Fuente, M.C., Benavides-Mendoza, A., Valdés-Reyna, J. and Juárez-Maldonado, A., 2019. Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under nacl stress. Molecules, 24(17). https://doi.org/10.3390/molecules24173030

Mozafarian, M., Ismail, N.S.B. and Kappel, N., 2020. Rootstock effects on yield and some consumer important fruit quality parameters of eggplant cv. “Madonna” under protected cultivation. Agronomy, 10(9). https://doi.org/10.3390/AGRONOMY10091442

Nagata, M. and Yamashita, I., 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Japanese Society for Food Science and Technology, 39(10), pp.925–928. https://doi.org/10.3136/nskkk1962.39.925

Noreldin, T., Ouda, S., Mounzer, O. and Abdelhamid, M.T., 2015. CropSyst model for wheat under deficit irrigation using sprinkler and drip irrigation in sandy soil. Journal of Water and Land Development, 26(1), pp.57–64. https://doi.org/10.1515/jwld-2015-0016

Pal, S., Zhao, J., Khan, A., Yadav, N.S., Batushansky, A., Barak, S., Rewald, B., Fait, A., Lazarovitch, N. and Rachmilevitch, S., 2016. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports, 6(November), pp.1–13. https://doi.org/10.1038/srep39321

Palada, M.C. and Wu, D.L., 2007. Increasing off-season Tomato production using grafting technology for peri-urban agriculture in Southeast Asia. Acta Horticulturae, 742(October 2003), pp.125–132. https://doi.org/10.17660/actahortic.2007.742.17

Patanè, C., Tringali, S. and Sortino, O., 2011. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae, 129(4), pp.590–596. https://doi.org/10.1016/j.scienta.2011.04.030

Pogonyi, Á., Pék, Z., Helyes, L. and Lugasi, A., 2005. Effect of grafting on the tomato’s yield, quality and main fruit components in spring forcing. Acta Alimentaria, 34(4), pp.453–462. https://doi.org/10.1556/AAlim.34.2005.4.12

Prakash, G., Chavan, M.L., Jagadeesha, R.C., Jayappa, J. and Shankarappa, K.S., 2019. Screening of Tomato Genotypes for Various Yield and Quality Parameters under Regulated Deficit Irrigations in Northern Dry Zone of Karnataka. International Journal of Current Microbiology and Applied Sciences, 8(02), pp.2275–2283. https://doi.org/10.20546/ijcmas.2019.802.265

Priyanka, N., Geetha, N., Ghorbanpour, M. and Venkatachalam, P., 2019. Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: present status and future prospects. In: Advances in Phytonanotechnology. [online] Elsevier Inc. pp.183–201. https://doi.org/10.1016/b978-0-12-815322-2.00007-9

Rajput, V.D., Minkina, T., Suskova, S., Mandzhieva, S., Tsitsuashvili, V., Chapligin, V. and Fedorenko, A., 2018. Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review. BioNanoScience, 8(1), pp.36–42. https://doi.org/10.1007/s12668-017-0466-3

Raliya, R., Saharan, V., Dimkpa, C. and Biswas, P., 2018. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry, 66(26), pp.6487–6503. https://doi.org/10.1021/acs.jafc.7b02178

Ramírez-Jiménez, J.A., Barrera-Sánchez, C.F. and Córdoba-Gaona, O. de J., 2020. Yield and yield components of tomato grafted plants in the high Andean region of Colombia. Revista Colombiana De Ciencias Hortícolas, 14(3), pp.375–384.

Ramírez-Jiménez, J.A., Ribeiro Marchiori, P.E. and Córdoba-Gaona, O. de J., 2021. Grafting effect on photosynthetic activity and yield of tomato under a plastic house in Colombia. Revista Facultad Nacional de Agronomía Medellín, 74(3), pp.9621–9629. https://doi.org/https://doi.org/10.15446/rfnam.v74n3.93102

Reshma, A., Sadarunnisa, S., Syamsundar, R.P., Tanuja, P.B., Naga, M.K. V and Padmaja, V. V, 2024. Effect of grafting on growth, yield, quality and nutrient uptake in tomato. International Journal of Advanced Biochemistry Research, 8(10), pp.361–367.

Ripoll, J., Urban, L., Brunel, B. and Bertin, N., 2016. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Journal of Plant Physiology, [online] 190, pp.26–35. https://doi.org/10.1016/j.jplph.2015.10.006

Schwarz, D., Öztekin, G.B., Tüzel, Y., Brückner, B. and Krumbein, A., 2013. Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Scientia Horticulturae, [online] 149, pp.70–79. https://doi.org/10.1016/j.scienta.2012.06.013

Singh, H., Kumar, P., Kumar, A., Kyriacou, M.C., Colla, G. and Rouphael, Y., 2020. Grafting tomato as a tool to improve salt tolerance. Agronomy, 10(2), pp.1–21. https://doi.org/10.3390/agronomy10020263

Soare, R., Dinu, M. and Babeanu, C., 2018. The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Horticultural Science, 45(2), pp.76–82. https://doi.org/10.17221/214/2016-HORTSCI

Sora, D., Doltu, M., Dr?ghici, E.M. and Bogoescu, M.I., 2019. Effect of grafting on tomato fruit quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), pp.1246–1251. https://doi.org/10.15835/nbha47411719

Steiner, A.A., 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil, [online] 15(2), pp.134–154. https://doi.org/10.1007/BF01347224

Tahi, H., Wahbi, S., Wakrim, R., Aganchich, B., Serraj, R. and Centritto, M., 2007. Water relations, photosynthesis, growth and water-use efficiency in tomato plants subjected to partial rootzone drying and regulated deficit irrigation. Plant Biosystems, 141(2), pp.265–274. https://doi.org/10.1080/11263500701401927

Takács, S., Pék, Z., Csányi, D., Daood, H.G., Szuvandzsiev, P., Palotás, G. and Helyes, L., 2020. Influence of water stress levels on the yield and lycopene content of tomato. Water, 12(8), pp.1–17. https://doi.org/10.3390/W12082165

Turhan, A., Kuscu, H., Ozmen, N., Aydinol, P., Seniz, V. and Demir, A.O., 2016. Effects of soil water deficit at different growth stages on yield and quality of processing tomato. Acta Horticulturae, 1145, pp.85–91. https://doi.org/10.17660/ActaHortic.2016.1145.13

Turhan, A., Ozmen, N., Kuscu, H., Serbeci, M.S. and Seniz, V., 2012. Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Horticulture Environment and Biotechnology, 53(4), pp.336–341. https://doi.org/10.1007/s13580-012-0034-2

USDA, 2005. Shipping Point and Market Shipping Point and Market Inspection Instructions for Tomatoes. Agricultural Marketing Service, (December).

Voronkova, I. and Rzayeva, V., 2024. Germination, survival and preservation of tomatoes when using the technological method of grafting in protected soil. Agrarian science, 1, pp.173–176. https://doi.org/10.32634/0869-8155-2024-385-8-173-176

Waliszewski, K.N. and Blasco, G., 2010. Propiedades nutraceúticas del licopeno. Salud Publica de Mexico, 52(3), pp.254–265.

Wang, J., Li, Y. and Niu, W., 2020. Deficit alternate drip irrigation increased root-soil-plant interaction, tomato yield, and quality. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030781

Wu, Y., Yan, S., Fan, J., Zhang, F., Xiang, Y., Zheng, J. and Guo, J., 2021. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, [online] 275(January 2020), p.109710. https://doi.org/10.1016/j.scienta.2020.109710




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.58826

DOI: http://dx.doi.org/10.56369/tsaes.5882



Copyright (c) 2025 Luis Eduardo Tamayo-Ruiz, Efraín Neri-Ramírez, Marcelino Cabrera-De la Fuente, Mario Rocandio-Rodríguez, Yolanda Del Rocío Moreno-Ramírez, Rafael Delgado-Martínez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.