COMBINING ALLOMETRY AND UNMANNED AERIAL VEHICLE TO ESTIMATE ABOVEGROUND BIOMASS AT THE INDIVIDUAL TREE LEVEL

Marín Pompa-García, Jaime Roberto Padilla-Martínez, Eduardo Daniel Vivar-Vivar, Jose Israel Yerena-Yamallel

Abstract


Background: Forest ecosystems are sources of environmental services, not least their considerable capacity to sequester large amounts of carbon. Accurate measurements of aboveground biomass (AGB) are therefore gaining importance in the models implemented by climate change mitigation initiatives. Objective: To estimate the aboveground biomass of individual trees using allometric and photogrammetric techniques, with total tree height (TH) as a predictor variable calculated from images obtained by unmanned aerial vehicles (UAV). Methodology: The experiment included a natural stand of mixed and uneven-aged forest (PAW) and a forestry plantation (REB) as strategic areas to contribute to refining the knowledge regarding AGB estimation. Combining field data with the use of a DJI Phantom 4 Multispectral UAV, we explored TH as a predictor variable of AGB using regression procedures. Results: In the PAW were classified four genera: Pinus, Quercus, Arbutus, and Juniperus, the first was the most abundant genus. On the other hand, the REB site is composed of Pinus arizonica. Consequently, the models of AGB were highly accurate (R2 > 0.85, 0.90) for PAW and REB, respectively. Implications: To improve the estimates of AGB, we would not discount the future inclusion of more dasometric attributes, including spectral variables. It would also be advisable to refine these models by size and age ranges, as well as to apply other non-parametric statistical techniques. Conclusion: We argue that our methodology is useful for biomass estimation and acts to better facilitate the estimation of AGB compared to conventional techniques, as well as allowing subsequent calibration according to local conditions.

Keywords


tree height; regression; tree attributes; airborne observations

Full Text:

PDF

References


Aabeyir, R., Adu-Bredu, S., Agyare, W.A. and Weir, M.J.C., 2020. Allometric models for estimating aboveground biomass in the tropical woodlands of Ghana, West Africa. Forest Ecosystems, 7(1), p. 41. https://doi.org/10.1186/s40663-020-00250-3

Basuki, T.M., van Laake, P.E., Skidmore, A.K. and Hussin, Y.A., 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), pp. 1684–1694. https://doi.org/10.1016/j.foreco.2009.01.027

Chaturvedi, R.K. and Raghubanshi, A.S., 2013. Aboveground biomass estimation of small diameter woody species of tropical dry forest. New Forests, 44(4), pp. 509–519. https://doi.org/10.1007/s11056-012-9359-z

Dang, A.T.N., Nandy, S., Srinet, R., Luong, N.V., Ghosh, S. and Senthil Kumar, A., 2019. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 50, pp. 24–32. https://doi.org/10.1016/j.ecoinf.2018.12.010

Di Lallo, G., Maesano, M., Masiero, M., Mugnozza, G.S. and Marchetti, M., 2016. Analyzing Strategies to Enhance Small and Low Intensity Managed Forests Certification in Europe using SWOT-ANP. Small-scale Forestry, 15(3), pp. 393–411. https://doi.org/10.1007/s11842-016-9329-y

Foody, G.M., Boyd, D.S. and Cutler, M.E.J., 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85(4), pp. 463–474. https://doi.org/10.1016/S0034-4257(03)00039-7

Gallardo-Salazar, J.L., Carrillo-Aguilar, D.M., Pompa-García, M. and Aguirre-Salado, C.A., 2021. Multispectral indices and individual-tree level attributes explain forest productivity in a pine clonal orchard of Northern Mexico. Geocarto International, 37(15), pp. 4441–4453. https://doi.org/10.1080/10106049.2021.1886341

Gallardo-Salazar, J.L. and Pompa-García, M., 2020. Detecting Individual Tree Attributes and Multispectral Indices Using Unmanned Aerial Vehicles: Applications in a Pine Clonal Orchard. Remote Sensing, 12(24), p. 4144. https://doi.org/10.3390/rs12244144

González-Elizondo, M.S., González-Elizondo, M., Tena-Flores, J.A., Ruacho-González, L. and López-Enríquez, I.L., 2012. Vegetación de la Sierra Madre Occidental, México: una síntesis. Acta Botanica Mexicana, (100), pp. 351–403. https://doi.org/10.21829/abm100.2012.40

Hulet, A., Roundy, B.A., Petersen, S.L., Bunting, S.C., Jensen, R.R. and Roundy, D.B., 2014. Utilizing National Agriculture Imagery Program Data to Estimate Tree Cover and Biomass of Piñon and Juniper Woodlands. Rangeland Ecology & Management, 67(5), pp. 563–572. https://doi.org/10.2111/REM-D-13-00044.1

IPCC (Intergovernmental Panel on Climate Change), 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. [online] Switzerland: IPCC. Available at: https://www.ipcc.ch/site/assets/uploads/2018/03/Wetlands_Supplement_Entire_Report.pdf [Accessed 15 September 2024].

Itoh, T., Matsue, K. and Naito, K., 2008. Estimating forest resources using airbone LiDAR - Application of model for estimating the stem volume of Sugi (Cryptomeria japonica D. Don) and Hinoki (Chamaecyparis obtusa Endl.) by the tree height and the parameter of crown. Journal of the Japan society of photogrammetry and remote sensing, 47(1), pp. 26–35. https://doi.org/10.4287/jsprs.47.26

Jones, A.R., Raja Segaran, R., Clarke, K.D., Waycott, M., Goh, W.S.H. and Gillanders, B.M., 2020. Estimating Mangrove Tree Biomass and Carbon Content: A Comparison of Forest Inventory Techniques and Drone Imagery. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00784

Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., Dalponte, M., van Ewijk, K.Y., Forrester, D.I., Haeni, M., Higgins, S.I., Holdaway, R.J., Iida, Y., Lorimer, C., Marshall, P.L., Momo, S., Moncrieff, G.R., Ploton, P., Poorter, L., Rahman, K.A., Schlund, M., Sonké, B., Sterck, F.J., Trugman, A.T., Usoltsev, V.A., Vanderwel, M.C., Waldner, P., Wedeux, B.M.M., Wirth, C., Wöll, H., Woods, M., Xiang, W., Zimmermann, N.E. and Coomes, D.A., 2017. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23(1), pp. 177–190. https://doi.org/10.1111/gcb.13388

Karpina, M., Jarz?bek-Rychard, M., Tymków, P. and Borkowski, A., 2016. UAV-based automatic tree growth measurement for biomass estimation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, pp. 685–688. https://doi.org/10.5194/isprs-archives-XLI-B8-685-2016

Krisanski, S., Del Perugia, B., Taskhiri, M.S. and Turner, P., 2018. Below-canopy UAS photogrammetry for stem measurement in radiata pine plantation. In: C.M. Neale and A. Maltese, eds. Remote Sensing for Agriculture, Ecosystems, and Hydrology XX. SPIE. p. 11. https://doi.org/10.1117/12.2325480

Ku, N.-W. and Popescu, S.C., 2019. A comparison of multiple methods for mapping local-scale mesquite tree aboveground biomass with remotely sensed data. Biomass and Bioenergy, 122, pp. 270–279. https://doi.org/10.1016/j.biombioe.2019.01.045

Lin, J., Wang, M., Ma, M. and Lin, Y., 2018. Aboveground Tree Biomass Estimation of Sparse Subalpine Coniferous Forest with UAV Oblique Photography. Remote Sensing, 10(11), p. 1849. https://doi.org/10.3390/rs10111849

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G. and Moran, E., 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), pp. 63–105. https://doi.org/10.1080/17538947.2014.990526

Machimura, T., Fujimoto, A., Hayashi, K., Takagi, H. and Sugita, S., 2021. A Novel Tree Biomass Estimation Model Applying the Pipe Model Theory and Adaptable to UAV-Derived Canopy Height Models. Forests, 12(2), p. 258. https://doi.org/10.3390/f12020258

Maesano, M., Santopuoli, G., Moresi, F., Matteucci, G., Lasserre, B. and Scarascia Mugnozza, G., 2022. Above ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy. iForest - Biogeosciences and Forestry, 15(6), pp. 451–457. https://doi.org/10.3832/ifor3781-015

Mascaro, J., Litton, C.M., Hughes, R.F., Uowolo, A. and Schnitzer, S.A., 2011. Minimizing Bias in Biomass Allometry: Model Selection and Log?Transformation of Data. Biotropica, 43(6), pp. 649–653. https://doi.org/10.1111/j.1744-7429.2011.00798.x

Miller, R., Bates, J., Svejcar, T., Pierson, F. and Eddleman, L., 2005. Biology, Ecology, and Management of Western Juniper. Corvallis, OR, USA: Oregon state University, Agricultural Experiment Station.

Moisen, G.G. and Frescino, T.S., 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157(2–3), pp. 209–225. https://doi.org/10.1016/S0304-3800(02)00197-7

Owers, C.J., Rogers, K. and Woodroffe, C.D., 2018. Spatial variation of above-ground carbon storage in temperate coastal wetlands. Estuarine, Coastal and Shelf Science, 210, pp. 55–67. https://doi.org/10.1016/j.ecss.2018.06.002

Panagiotidis, D., Abdollahnejad, A., Surový, P. and Chiteculo, V., 2017. Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing, 38(8–10), pp. 2392–2410. https://doi.org/10.1080/01431161.2016.1264028

Popescu, S.C., Wynne, R.H. and Scrivani, J.A., 2004. Fusion of Small-Footprint Lidar and Multispectral Data to Estimate Plot- Level Volume and Biomass in Deciduous and Pine Forests in Virginia, USA. Forest Science, 50(4), pp. 551–565. https://doi.org/10.1093/forestscience/50.4.551

Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B. and Ohmann, J.L., 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114(5), pp. 1053–1068. https://doi.org/10.1016/j.rse.2009.12.018

Shang, C., Treitz, P., Caspersen, J. and Jones, T., 2019. Estimation of forest structural and compositional variables using ALS data and multi-seasonal satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 78, pp. 360–371. https://doi.org/10.1016/j.jag.2018.10.002

Shao, G., Shao, G., Gallion, J., Saunders, M.R., Frankenberger, J.R. and Fei, S., 2018. Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity. Remote Sensing of Environment, 204, pp. 872–882. https://doi.org/10.1016/j.rse.2017.09.011

Temesgen, H., Affleck, D., Poudel, K., Gray, A. and Sessions, J., 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, pp. 1–10. https://doi.org/10.1080/02827581.2015.1012114

Vapnik, V., Golowich, S. and Smola, A., 1997. Support Vector Method for Function Approximation, Regression Estimation and Signal. In: M. Mozer, M. Jordan and T. Petsche, eds. Advances in Neural Information Processing Systems 9. Cambridge, Massachusetts, USA: The MIT Press. pp. 281–287.

Vargas-Larreta, B., López-Sánchez, C.A., Corral-Rivas, J.J., López-Martínez, J.O., Aguirre-Calderón, C.G. and Álvarez-González, J.G., 2017. Allometric Equations for Estimating Biomass and Carbon Stocks in the Temperate Forests of North-Western Mexico. Forests, 8(8), p. 269. https://doi.org/10.3390/f8080269

Vivar-Vivar, E.D., Pompa-García, M., Martínez-Rivas, J.A. and Mora-Tembre, L.A., 2022. UAV-Based Characterization of Tree-Attributes and Multispectral Indices in an Uneven-Aged Mixed Conifer-Broadleaf Forest. Remote Sensing, 14(12), p. 2775. https://doi.org/10.3390/rs14122775

Wang, M., Sun, R. and Xiao, Z., 2018. Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland. Remote Sensing, 10(2), p. 344. https://doi.org/10.3390/rs10020344

Wang, Y., Zhang, X. and Guo, Z., 2021. Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data. Ecological Indicators, 126, p. 107645. https://doi.org/10.1016/j.ecolind.2021.107645

Wylie, L., Sutton-Grier, A.E. and Moore, A., 2016. Keys to successful blue carbon projects: Lessons learned from global case studies. Marine Policy, 65, pp. 76–84. https://doi.org/10.1016/j.marpol.2015.12.020

Yanli, X., Chao, L., Zhichao, S., Lichun, J. and Jingyun, F., 2019. Tree height explains stand volume of closed-canopy stands: Evidence from forest inventory data of China. Forest Ecology and Management, 438, pp. 51–56. https://doi.org/10.1016/j.foreco.2019.01.054

Zhang, L., Zhang, X., Shao, Z., Jiang, W. and Gao, H., 2023. Integrating Sentinel-1 and 2 with LiDAR data to estimate aboveground biomass of subtropical forests in northeast Guangdong, China. International Journal of Digital Earth, 16(1), pp. 158–182. https://doi.org/10.1080/17538947.2023.2165180




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.58693

DOI: http://dx.doi.org/10.56369/tsaes.5869



Copyright (c) 2025 Jaime Roberto Padilla-Martínez, Marín Pompa-García, Jose Israel Yerena Yamallel, Eduardo Daniel Vivar-Vivar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.