COMBINING ALLOMETRY AND UNMANNED AERIAL VEHICLE TO ESTIMATE ABOVEGROUND BIOMASS AT THE INDIVIDUAL TREE LEVEL
Abstract
Keywords
Full Text:
PDFReferences
Aabeyir, R., Adu-Bredu, S., Agyare, W.A. and Weir, M.J.C., 2020. Allometric models for estimating aboveground biomass in the tropical woodlands of Ghana, West Africa. Forest Ecosystems, 7(1), p. 41. https://doi.org/10.1186/s40663-020-00250-3
Basuki, T.M., van Laake, P.E., Skidmore, A.K. and Hussin, Y.A., 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), pp. 1684–1694. https://doi.org/10.1016/j.foreco.2009.01.027
Chaturvedi, R.K. and Raghubanshi, A.S., 2013. Aboveground biomass estimation of small diameter woody species of tropical dry forest. New Forests, 44(4), pp. 509–519. https://doi.org/10.1007/s11056-012-9359-z
Dang, A.T.N., Nandy, S., Srinet, R., Luong, N.V., Ghosh, S. and Senthil Kumar, A., 2019. Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam. Ecological Informatics, 50, pp. 24–32. https://doi.org/10.1016/j.ecoinf.2018.12.010
Di Lallo, G., Maesano, M., Masiero, M., Mugnozza, G.S. and Marchetti, M., 2016. Analyzing Strategies to Enhance Small and Low Intensity Managed Forests Certification in Europe using SWOT-ANP. Small-scale Forestry, 15(3), pp. 393–411. https://doi.org/10.1007/s11842-016-9329-y
Foody, G.M., Boyd, D.S. and Cutler, M.E.J., 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85(4), pp. 463–474. https://doi.org/10.1016/S0034-4257(03)00039-7
Gallardo-Salazar, J.L., Carrillo-Aguilar, D.M., Pompa-García, M. and Aguirre-Salado, C.A., 2021. Multispectral indices and individual-tree level attributes explain forest productivity in a pine clonal orchard of Northern Mexico. Geocarto International, 37(15), pp. 4441–4453. https://doi.org/10.1080/10106049.2021.1886341
Gallardo-Salazar, J.L. and Pompa-García, M., 2020. Detecting Individual Tree Attributes and Multispectral Indices Using Unmanned Aerial Vehicles: Applications in a Pine Clonal Orchard. Remote Sensing, 12(24), p. 4144. https://doi.org/10.3390/rs12244144
González-Elizondo, M.S., González-Elizondo, M., Tena-Flores, J.A., Ruacho-González, L. and López-Enríquez, I.L., 2012. Vegetación de la Sierra Madre Occidental, México: una síntesis. Acta Botanica Mexicana, (100), pp. 351–403. https://doi.org/10.21829/abm100.2012.40
Hulet, A., Roundy, B.A., Petersen, S.L., Bunting, S.C., Jensen, R.R. and Roundy, D.B., 2014. Utilizing National Agriculture Imagery Program Data to Estimate Tree Cover and Biomass of Piñon and Juniper Woodlands. Rangeland Ecology & Management, 67(5), pp. 563–572. https://doi.org/10.2111/REM-D-13-00044.1
IPCC (Intergovernmental Panel on Climate Change), 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. [online] Switzerland: IPCC. Available at: https://www.ipcc.ch/site/assets/uploads/2018/03/Wetlands_Supplement_Entire_Report.pdf [Accessed 15 September 2024].
Itoh, T., Matsue, K. and Naito, K., 2008. Estimating forest resources using airbone LiDAR - Application of model for estimating the stem volume of Sugi (Cryptomeria japonica D. Don) and Hinoki (Chamaecyparis obtusa Endl.) by the tree height and the parameter of crown. Journal of the Japan society of photogrammetry and remote sensing, 47(1), pp. 26–35. https://doi.org/10.4287/jsprs.47.26
Jones, A.R., Raja Segaran, R., Clarke, K.D., Waycott, M., Goh, W.S.H. and Gillanders, B.M., 2020. Estimating Mangrove Tree Biomass and Carbon Content: A Comparison of Forest Inventory Techniques and Drone Imagery. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00784
Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., Dalponte, M., van Ewijk, K.Y., Forrester, D.I., Haeni, M., Higgins, S.I., Holdaway, R.J., Iida, Y., Lorimer, C., Marshall, P.L., Momo, S., Moncrieff, G.R., Ploton, P., Poorter, L., Rahman, K.A., Schlund, M., Sonké, B., Sterck, F.J., Trugman, A.T., Usoltsev, V.A., Vanderwel, M.C., Waldner, P., Wedeux, B.M.M., Wirth, C., Wöll, H., Woods, M., Xiang, W., Zimmermann, N.E. and Coomes, D.A., 2017. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23(1), pp. 177–190. https://doi.org/10.1111/gcb.13388
Karpina, M., Jarz?bek-Rychard, M., Tymków, P. and Borkowski, A., 2016. UAV-based automatic tree growth measurement for biomass estimation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, pp. 685–688. https://doi.org/10.5194/isprs-archives-XLI-B8-685-2016
Krisanski, S., Del Perugia, B., Taskhiri, M.S. and Turner, P., 2018. Below-canopy UAS photogrammetry for stem measurement in radiata pine plantation. In: C.M. Neale and A. Maltese, eds. Remote Sensing for Agriculture, Ecosystems, and Hydrology XX. SPIE. p. 11. https://doi.org/10.1117/12.2325480
Ku, N.-W. and Popescu, S.C., 2019. A comparison of multiple methods for mapping local-scale mesquite tree aboveground biomass with remotely sensed data. Biomass and Bioenergy, 122, pp. 270–279. https://doi.org/10.1016/j.biombioe.2019.01.045
Lin, J., Wang, M., Ma, M. and Lin, Y., 2018. Aboveground Tree Biomass Estimation of Sparse Subalpine Coniferous Forest with UAV Oblique Photography. Remote Sensing, 10(11), p. 1849. https://doi.org/10.3390/rs10111849
Lu, D., Chen, Q., Wang, G., Liu, L., Li, G. and Moran, E., 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), pp. 63–105. https://doi.org/10.1080/17538947.2014.990526
Machimura, T., Fujimoto, A., Hayashi, K., Takagi, H. and Sugita, S., 2021. A Novel Tree Biomass Estimation Model Applying the Pipe Model Theory and Adaptable to UAV-Derived Canopy Height Models. Forests, 12(2), p. 258. https://doi.org/10.3390/f12020258
Maesano, M., Santopuoli, G., Moresi, F., Matteucci, G., Lasserre, B. and Scarascia Mugnozza, G., 2022. Above ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy. iForest - Biogeosciences and Forestry, 15(6), pp. 451–457. https://doi.org/10.3832/ifor3781-015
Mascaro, J., Litton, C.M., Hughes, R.F., Uowolo, A. and Schnitzer, S.A., 2011. Minimizing Bias in Biomass Allometry: Model Selection and Log?Transformation of Data. Biotropica, 43(6), pp. 649–653. https://doi.org/10.1111/j.1744-7429.2011.00798.x
Miller, R., Bates, J., Svejcar, T., Pierson, F. and Eddleman, L., 2005. Biology, Ecology, and Management of Western Juniper. Corvallis, OR, USA: Oregon state University, Agricultural Experiment Station.
Moisen, G.G. and Frescino, T.S., 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157(2–3), pp. 209–225. https://doi.org/10.1016/S0304-3800(02)00197-7
Owers, C.J., Rogers, K. and Woodroffe, C.D., 2018. Spatial variation of above-ground carbon storage in temperate coastal wetlands. Estuarine, Coastal and Shelf Science, 210, pp. 55–67. https://doi.org/10.1016/j.ecss.2018.06.002
Panagiotidis, D., Abdollahnejad, A., Surový, P. and Chiteculo, V., 2017. Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing, 38(8–10), pp. 2392–2410. https://doi.org/10.1080/01431161.2016.1264028
Popescu, S.C., Wynne, R.H. and Scrivani, J.A., 2004. Fusion of Small-Footprint Lidar and Multispectral Data to Estimate Plot- Level Volume and Biomass in Deciduous and Pine Forests in Virginia, USA. Forest Science, 50(4), pp. 551–565. https://doi.org/10.1093/forestscience/50.4.551
Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B. and Ohmann, J.L., 2010. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114(5), pp. 1053–1068. https://doi.org/10.1016/j.rse.2009.12.018
Shang, C., Treitz, P., Caspersen, J. and Jones, T., 2019. Estimation of forest structural and compositional variables using ALS data and multi-seasonal satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 78, pp. 360–371. https://doi.org/10.1016/j.jag.2018.10.002
Shao, G., Shao, G., Gallion, J., Saunders, M.R., Frankenberger, J.R. and Fei, S., 2018. Improving Lidar-based aboveground biomass estimation of temperate hardwood forests with varying site productivity. Remote Sensing of Environment, 204, pp. 872–882. https://doi.org/10.1016/j.rse.2017.09.011
Temesgen, H., Affleck, D., Poudel, K., Gray, A. and Sessions, J., 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, pp. 1–10. https://doi.org/10.1080/02827581.2015.1012114
Vapnik, V., Golowich, S. and Smola, A., 1997. Support Vector Method for Function Approximation, Regression Estimation and Signal. In: M. Mozer, M. Jordan and T. Petsche, eds. Advances in Neural Information Processing Systems 9. Cambridge, Massachusetts, USA: The MIT Press. pp. 281–287.
Vargas-Larreta, B., López-Sánchez, C.A., Corral-Rivas, J.J., López-Martínez, J.O., Aguirre-Calderón, C.G. and Álvarez-González, J.G., 2017. Allometric Equations for Estimating Biomass and Carbon Stocks in the Temperate Forests of North-Western Mexico. Forests, 8(8), p. 269. https://doi.org/10.3390/f8080269
Vivar-Vivar, E.D., Pompa-García, M., Martínez-Rivas, J.A. and Mora-Tembre, L.A., 2022. UAV-Based Characterization of Tree-Attributes and Multispectral Indices in an Uneven-Aged Mixed Conifer-Broadleaf Forest. Remote Sensing, 14(12), p. 2775. https://doi.org/10.3390/rs14122775
Wang, M., Sun, R. and Xiao, Z., 2018. Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland. Remote Sensing, 10(2), p. 344. https://doi.org/10.3390/rs10020344
Wang, Y., Zhang, X. and Guo, Z., 2021. Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data. Ecological Indicators, 126, p. 107645. https://doi.org/10.1016/j.ecolind.2021.107645
Wylie, L., Sutton-Grier, A.E. and Moore, A., 2016. Keys to successful blue carbon projects: Lessons learned from global case studies. Marine Policy, 65, pp. 76–84. https://doi.org/10.1016/j.marpol.2015.12.020
Yanli, X., Chao, L., Zhichao, S., Lichun, J. and Jingyun, F., 2019. Tree height explains stand volume of closed-canopy stands: Evidence from forest inventory data of China. Forest Ecology and Management, 438, pp. 51–56. https://doi.org/10.1016/j.foreco.2019.01.054
Zhang, L., Zhang, X., Shao, Z., Jiang, W. and Gao, H., 2023. Integrating Sentinel-1 and 2 with LiDAR data to estimate aboveground biomass of subtropical forests in northeast Guangdong, China. International Journal of Digital Earth, 16(1), pp. 158–182. https://doi.org/10.1080/17538947.2023.2165180
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.58693
DOI: http://dx.doi.org/10.56369/tsaes.5869
Copyright (c) 2025 Jaime Roberto Padilla-Martínez, Marín Pompa-García, Jose Israel Yerena Yamallel, Eduardo Daniel Vivar-Vivar

This work is licensed under a Creative Commons Attribution 4.0 International License.