ENVIRONMENTAL CHARACTERIZATION IN A SILVOPASTORAL SYSTEM IN THE FRAILESCA REGION OF CHIAPAS, MEXICO

C. I. Vázquez-Ramos, M. A. Salas-Marina, W. O. Cruz-Macías, L. A. Rodríguez-Larramendi

Abstract


Background. The presence of the tree component above the herbaceous stratum in a silvopastoral system changes the microclimate, with implications for pasture growth. Objective. To compare the conditions generated in the microclimate of a silvopastoral system composed of hybrid Brachiaria sp. grass cv. CIAT BRO2/1752, under scattered trees and full sun exposure. Methodology. An experimental procedure was followed under field conditions in two experimental variants: pasture grown in full sun and pasture grown under shade of scattered trees from July 2022 to February 2023. Microclimatic variables were evaluated: diurnal air temperature, relative humidity, photosynthetically active radiation, soil moisture, soil temperature and vapor pressure deficit. Results. The dispersed trees attenuated 85% of the incident solar radiation, while in full sun there was an increase of 1.1 ºC in air temperature compared to the variant under dispersed trees. There were no significant differences in relative air humidity. Soil moisture was 5.6% higher in full sun and vapor pressure deficit was lower in full sun. Implications. The environmental differences observed, in Brachiaria grassland under scattered trees or in full sun, open new questions about their effect on pasture physiology, animal behavior or soil microflora. Conclusions. Scattered trees in a silvopastoral system modify the microclimate by attenuating the intensity of PAR and decreasing air temperature. Nevertheless, higher soil moisture values are maintained in full sun than under tree shade. 

Keywords


solar radiation; temperature; Brachiaria; agroforestry.

Full Text:

PDF

References


Andrade, F.H., Abbate, P.E., Otegui, M.E., Cirilo, A.G. and Cerrudo, A., 2010. Ecophysiological basis for crop management. The Americas Journal of Plant Science & Biotechnology, 4, pp. 23–34.

Asitoakor, B.K., Vaast, P., Ræbild, A., Ravn, H.P., Eziah, V.Y., Owusu, K., Mensah, E.O. and Asare, R., 2022. Selected shade tree species improved cocoa yields in low-input agroforestry systems in Ghana. Agricultural Systems, 202, p. 103476. https://doi.org/10.1016/j.agsy.2022.103476

Bahamonde, H.A., Peri, P.L., Martínez Pastur, G. and Lencinas, M.V., 2009. Variaciones microclimáticas en bosques primarios y bajo uso silvopastoril de Nothofagus antarctica en dos clases de sitio en Patagonia Sur. In: Actas Primer Congreso Nacional de Sistemas Silvopastoriles, Posadas, Misiones, Argentina.

Britto-Ferreira, L., 2010. Respostas fisiológicas e comportamentais de bovinos submetidos a diferentes ofertas de sombra. M.Sc. Dissertation, Universidade Federal de Santa Catarina, Brasil.

Castle, S.E., Miller, D.C., Merten, N., Ordonez, P.J. and Baylis, K., 2022. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environmental Evidence, 11(1), p. 10. https://doi.org/10.1186/s13750-022-00260-4

de Souza, W., Barbosa, O.R., Marques, J.A., Costa, M.A.T., Gasparino, E. and Limberger, E., 2010. Microclimate in silvipastoral systems with eucalyptus in rank with different heights. Revista Brasileira Zootecnia, 39(3), pp. 685–694. https://doi.org/10.1590/S1516-35982010000300030

dos Santos, Neto, C.F., da Silva, R.G. and Maranhão, S.R., 2022. Microclimate and animal thermal comfort indexes in different silvopastoral system arrangements in Caatinga. International Journal of Biometeorology, 66, pp. 449–456. https://doi.org/10.1007/s00484-021-02182-1

Elías, F. and Castellvi, F., 2001. Agrometeorología. 2nd ed. Madrid: Mundi-Prensa.

Fageria, N.K., Baligar, V.C. and Jones, C.A., 2011. Growth and Mineral Nutrition of Field Crops. CRC Press.

Feldhake, C.M. and Belesky, D.P., 2009. Photosynthetically active radiation use efficiency of Dactylis glomerata and Schedonorus phoenix along a hardwood tree-induced light gradient. Agroforestry Systems, 75, pp. 189–196. https://doi.org/10.1007/s10457-008-9175-9

Giro, A., Pezzopane, J.R.M., Barioni Junior, W., de Pedroso, A.F., Lemes, A.P., Botta, D. and Garcia, A.R., 2019. Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Science of the Total Environment, 684, pp. 587–596. https://doi.org/10.1016/j.scitotenv.2019.05.377

Gómez, V., 2004. Cubiertas forestales y respuesta microclimática. Investigación Agraria: Sistemas y Recursos Forestales, Fuera de serie, pp. 84–100.

Hanisch, A.L. and Pinotti, L.C.A., 2024. Co-creating strategies to optimize traditional silvopastoral systems through the management of native trees in Caívas in southern Brazil. Conservation, 4(1), pp. 65–81. https://doi.org/10.3390/conservation4010005

Jose, S., 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76(1), pp. 1–10. https://doi.org/10.1007/s10457-009-9229-7

Jose, S., Gillespie, A.R. and Pallardy, S.G., 2004. Interspecific interactions in temperate agroforestry. Agroforestry Systems, 61(3), pp. 237–255. https://doi.org/10.1023/B:AGFO.0000029002.85273.9b

Karvatte, N., Klosowski, E.S., Almeida, R.G., Mesquita, E.E., Oliveira, C.C. and Alves, F.V., 2016. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. International Journal of Biometeorology, 60(12), pp. 1933–1941. https://doi.org/10.1007/s00484-016-1180-5

Lin, C.H., McGraw, M.L., George, M.F. and Garret, H.E., 2001. Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential. Agroforestry Systems, 53, pp. 269–281. https://doi.org/10.1023/A:1013323409839

Lisnawati, A., Lahjie, A.M., Simarangkir, B.D.A.S., Yusuf, S. and Ruslim, Y., 2017. Agroforestry system biodiversity of Arabica coffee cultivation in North Toraja district, South Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 18(2), pp. 741–751. https://doi.org/10.13057/biodiv/d180243

López-López, R., Arteaga Ramírez, R., Vázquez Peña, M.A., López Cruz, I. and Sánchez Cohen, I., 2009. Índice de estrés hídrico como un indicador del momento de riego en cultivos agrícolas. Agricultura Técnica en México, 35(1), pp. 97–111.

Lucero-Ignamarca, A., Muñoz Sáez, F., Cancino Cancino, J., Sotomayor Garretón, A., Dube, F., Sáez Carrillo, K. and Navarrete Torres, M., 2019. La cobertura arbórea de Acacia cave sobre la calidad de la pradera y microclima en un sistema silvopastoril de Chile central. Madera y bosques, 25(2). https://doi.org/10.21829/myb.2019.2521811

Macedo-Pezzopane, J.R., Bosi, C., Franceschi-Nicodemo, M., Menezes, P., Gomez da Cruz, P. and Suaiden-Parmejiani, R., 2015. Microclimate and soil moisture in a silvopastoral system in southeastern Brazil. Bragantia (Campinas), 74(1), pp. 110–119. https://doi.org/10.1590/1678-4499.0334

Mackay-Smith, T.H., Burkitt, L., Reid, J., López, I.F. and Phillips, C.A., 2021. Framework for reviewing silvopastoralism: A New Zealand Hill Country Case Study. Land, 10(12), p. 1386. https://doi.org/10.3390/land10121386

Mayer, H., Holst, T. and Schindler, D., 2002. Microclimate within beech stands: Part 1, photosynthetically active radiation. Forstwissenschaftliches Centralblatt, 121(4), pp. 301–321. https://doi.org/10.1007/s00484-016-1180-5

Munka, C., 2017. Microclima en sistemas silvopastoriles. In: C. Viñoles, J. Fedrigo and V. Benitez, eds. Seminario en Sistemas Silvopastoriles (2016). Producción integrada para maximizar la rentabilidad. Integración ganadería forestación. pp. 63–68.

Muñoz-Villers, L.E., Geris, J., Alvarado-Barrientos, M.S., Holwerda, F. and Dawson, T., 2020. Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem. Hydrology and Earth System Sciences, 24(4), pp. 1649–1668. https://doi.org/10.5194/hess-24-1649-2020

O’Conner, C., Zeller, B., Choma, C., Delbende, F., Siah, A., Waterlot, C. and Andrianarisoa, K.S., 2023. Trees in temperate alley-cropping systems develop deep fine roots 5 years after plantation: What are the consequences on soil resources? Agriculture, Ecosystems & Environment, 345, p. 108339. https://doi.org/10.1016/j.agee.2022.108339

Pagliai, M., Vignozzi, N. and Pellegrini, S., 2004. Soil structure and the effect of management practices. Soil and Tillage Research, 79(2), pp. 131–143. https://doi.org/10.1016/j.still.2004.07.002

Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. and Grace, P., 2001. Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agriculture, Ecosystems & Environment, 83(1–2), pp. 27–42. https://doi.org/10.1016/S0167-8809(00)00267-X

Peri, P.L., Dube, F. and Varella, A.C., 2016. Sistemas silvopastoriles en las zonas templadas y subtropicales de América del Sur: una visión general. In: Sistemas Silvopastoriles en el Sur de Sudamérica, pp. 1–8.

Pezzopane, J.R.M., Nicodemo, M.L.F., Bosi, C., Garcia, A.R. and Lulu, J., 2019. Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Journal of Thermal Biology, 79, pp. 103–111. https://doi.org/10.1016/j.jtherbio.2018.12.015

Rovira, P.J. and Velazco, J.I., 2008. Cuantificando el estrés calórico en vacunos en pastoreo. Revista INIA, 16, pp. 10–13.

Salas-Rivera, R., Valdez-Aguilar, L.A., Alvarado-Camarillo, D., Rascón-Alvarado, E., Peña-Ramos, F.M. and González-Fuentes, J.A., 2020. Balance potasio: calcio, relación con el déficit de presión de vapor y la radiación fotosintéticamente activa en tomate de invernadero. Terra Latinoamericana, 38(2), pp. 301–311. https://doi.org/10.28940/terra.v38i2.589

Sanaullah, M., Chabbi, A., Girardin, C., Durand, J.L., Poirier, M. and Rumpel, C., 2014. Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant and Soil, 374(1–2), pp. 767–778. https://doi.org/10.1007/s11104-013-1890-y

Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C., Réale, D., Dochtermann, N. A., Garamszegi, L. Z., & Araya?Ajoy, Y. G. (2020). Robustness of linear mixed?effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11(9), pp. 1141–1152. https://doi.org/10.1111/2041-210X.13434

Schinato, F., Munka, M.C., Olmos, V. and Bussoni, A.T., 2022. Microclimate, forage production and carbon storage in a eucalypt-based silvopastoral system. Agriculture, Ecosystems & Environment, 344, p. 108290. https://doi.org/10.1016/j.agee.2022.108290

Sileshi, G., Mafongoya, P. and Nath, A., 2020. Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. In: Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges. Ed. Springer Nature.

Tajuddin, I., 1986. Integración de animales en plantaciones de caucho. Sistemas Agroforestales, 4, pp. 55–66.

Tropical Seeds LLC, n.d. Cayman® Brachiaria Hybrid cv. CIAT BR02/1752. Tropical Seeds. https://www.tropseeds.com/cay

Velasco, E., Verdecia, J., Medina, R. and Rodriguez, L., 2001. Variaciones en el microclima de un cafetal en dependencia de la exposición a la radiación solar en las condiciones del macizo de la Sierra Maestra. Cultivos Tropicales, 22(3), pp. 53–59.

Wang, W., Vinocur, B. and Altman, A., 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), pp. 1–14. https://doi.org/10.1007/s00425-003-1105-5

Zhang, T., Liu, Y., Zimini, Y., Yuan, L. and Wen, Z., 2024. Effects of soil moisture and atmospheric vapor pressure deficit on the temporal variability of productivity in Eurasian grasslands. Remote Sensing, 16(13), p. 2368. https://doi.org/10.3390/rs16132368

Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer. https://doi.org/10.1007/978-0-387-87458-6




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.58057

DOI: http://dx.doi.org/10.56369/tsaes.5805



Copyright (c) 2025 Luis Alfredo Rodríguez Larramendi, Cesar Ivan Vázquez-Ramos, Miguel Angel Salas-Marina, Wel Olveín Cruz-Macías

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.