ENVIRONMENTAL CHARACTERIZATION IN A SILVOPASTORAL SYSTEM IN THE FRAILESCA REGION OF CHIAPAS, MEXICO
Abstract
Keywords
Full Text:
PDFReferences
Andrade, F.H., Abbate, P.E., Otegui, M.E., Cirilo, A.G. and Cerrudo, A., 2010. Ecophysiological basis for crop management. The Americas Journal of Plant Science & Biotechnology, 4, pp. 23–34.
Asitoakor, B.K., Vaast, P., Ræbild, A., Ravn, H.P., Eziah, V.Y., Owusu, K., Mensah, E.O. and Asare, R., 2022. Selected shade tree species improved cocoa yields in low-input agroforestry systems in Ghana. Agricultural Systems, 202, p. 103476. https://doi.org/10.1016/j.agsy.2022.103476
Bahamonde, H.A., Peri, P.L., Martínez Pastur, G. and Lencinas, M.V., 2009. Variaciones microclimáticas en bosques primarios y bajo uso silvopastoril de Nothofagus antarctica en dos clases de sitio en Patagonia Sur. In: Actas Primer Congreso Nacional de Sistemas Silvopastoriles, Posadas, Misiones, Argentina.
Britto-Ferreira, L., 2010. Respostas fisiológicas e comportamentais de bovinos submetidos a diferentes ofertas de sombra. M.Sc. Dissertation, Universidade Federal de Santa Catarina, Brasil.
Castle, S.E., Miller, D.C., Merten, N., Ordonez, P.J. and Baylis, K., 2022. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environmental Evidence, 11(1), p. 10. https://doi.org/10.1186/s13750-022-00260-4
de Souza, W., Barbosa, O.R., Marques, J.A., Costa, M.A.T., Gasparino, E. and Limberger, E., 2010. Microclimate in silvipastoral systems with eucalyptus in rank with different heights. Revista Brasileira Zootecnia, 39(3), pp. 685–694. https://doi.org/10.1590/S1516-35982010000300030
dos Santos, Neto, C.F., da Silva, R.G. and Maranhão, S.R., 2022. Microclimate and animal thermal comfort indexes in different silvopastoral system arrangements in Caatinga. International Journal of Biometeorology, 66, pp. 449–456. https://doi.org/10.1007/s00484-021-02182-1
Elías, F. and Castellvi, F., 2001. Agrometeorología. 2nd ed. Madrid: Mundi-Prensa.
Fageria, N.K., Baligar, V.C. and Jones, C.A., 2011. Growth and Mineral Nutrition of Field Crops. CRC Press.
Feldhake, C.M. and Belesky, D.P., 2009. Photosynthetically active radiation use efficiency of Dactylis glomerata and Schedonorus phoenix along a hardwood tree-induced light gradient. Agroforestry Systems, 75, pp. 189–196. https://doi.org/10.1007/s10457-008-9175-9
Giro, A., Pezzopane, J.R.M., Barioni Junior, W., de Pedroso, A.F., Lemes, A.P., Botta, D. and Garcia, A.R., 2019. Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Science of the Total Environment, 684, pp. 587–596. https://doi.org/10.1016/j.scitotenv.2019.05.377
Gómez, V., 2004. Cubiertas forestales y respuesta microclimática. Investigación Agraria: Sistemas y Recursos Forestales, Fuera de serie, pp. 84–100.
Hanisch, A.L. and Pinotti, L.C.A., 2024. Co-creating strategies to optimize traditional silvopastoral systems through the management of native trees in Caívas in southern Brazil. Conservation, 4(1), pp. 65–81. https://doi.org/10.3390/conservation4010005
Jose, S., 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76(1), pp. 1–10. https://doi.org/10.1007/s10457-009-9229-7
Jose, S., Gillespie, A.R. and Pallardy, S.G., 2004. Interspecific interactions in temperate agroforestry. Agroforestry Systems, 61(3), pp. 237–255. https://doi.org/10.1023/B:AGFO.0000029002.85273.9b
Karvatte, N., Klosowski, E.S., Almeida, R.G., Mesquita, E.E., Oliveira, C.C. and Alves, F.V., 2016. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. International Journal of Biometeorology, 60(12), pp. 1933–1941. https://doi.org/10.1007/s00484-016-1180-5
Lin, C.H., McGraw, M.L., George, M.F. and Garret, H.E., 2001. Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential. Agroforestry Systems, 53, pp. 269–281. https://doi.org/10.1023/A:1013323409839
Lisnawati, A., Lahjie, A.M., Simarangkir, B.D.A.S., Yusuf, S. and Ruslim, Y., 2017. Agroforestry system biodiversity of Arabica coffee cultivation in North Toraja district, South Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 18(2), pp. 741–751. https://doi.org/10.13057/biodiv/d180243
López-López, R., Arteaga Ramírez, R., Vázquez Peña, M.A., López Cruz, I. and Sánchez Cohen, I., 2009. Índice de estrés hídrico como un indicador del momento de riego en cultivos agrícolas. Agricultura Técnica en México, 35(1), pp. 97–111.
Lucero-Ignamarca, A., Muñoz Sáez, F., Cancino Cancino, J., Sotomayor Garretón, A., Dube, F., Sáez Carrillo, K. and Navarrete Torres, M., 2019. La cobertura arbórea de Acacia cave sobre la calidad de la pradera y microclima en un sistema silvopastoril de Chile central. Madera y bosques, 25(2). https://doi.org/10.21829/myb.2019.2521811
Macedo-Pezzopane, J.R., Bosi, C., Franceschi-Nicodemo, M., Menezes, P., Gomez da Cruz, P. and Suaiden-Parmejiani, R., 2015. Microclimate and soil moisture in a silvopastoral system in southeastern Brazil. Bragantia (Campinas), 74(1), pp. 110–119. https://doi.org/10.1590/1678-4499.0334
Mackay-Smith, T.H., Burkitt, L., Reid, J., López, I.F. and Phillips, C.A., 2021. Framework for reviewing silvopastoralism: A New Zealand Hill Country Case Study. Land, 10(12), p. 1386. https://doi.org/10.3390/land10121386
Mayer, H., Holst, T. and Schindler, D., 2002. Microclimate within beech stands: Part 1, photosynthetically active radiation. Forstwissenschaftliches Centralblatt, 121(4), pp. 301–321. https://doi.org/10.1007/s00484-016-1180-5
Munka, C., 2017. Microclima en sistemas silvopastoriles. In: C. Viñoles, J. Fedrigo and V. Benitez, eds. Seminario en Sistemas Silvopastoriles (2016). Producción integrada para maximizar la rentabilidad. Integración ganadería forestación. pp. 63–68.
Muñoz-Villers, L.E., Geris, J., Alvarado-Barrientos, M.S., Holwerda, F. and Dawson, T., 2020. Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem. Hydrology and Earth System Sciences, 24(4), pp. 1649–1668. https://doi.org/10.5194/hess-24-1649-2020
O’Conner, C., Zeller, B., Choma, C., Delbende, F., Siah, A., Waterlot, C. and Andrianarisoa, K.S., 2023. Trees in temperate alley-cropping systems develop deep fine roots 5 years after plantation: What are the consequences on soil resources? Agriculture, Ecosystems & Environment, 345, p. 108339. https://doi.org/10.1016/j.agee.2022.108339
Pagliai, M., Vignozzi, N. and Pellegrini, S., 2004. Soil structure and the effect of management practices. Soil and Tillage Research, 79(2), pp. 131–143. https://doi.org/10.1016/j.still.2004.07.002
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L. and Grace, P., 2001. Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agriculture, Ecosystems & Environment, 83(1–2), pp. 27–42. https://doi.org/10.1016/S0167-8809(00)00267-X
Peri, P.L., Dube, F. and Varella, A.C., 2016. Sistemas silvopastoriles en las zonas templadas y subtropicales de América del Sur: una visión general. In: Sistemas Silvopastoriles en el Sur de Sudamérica, pp. 1–8.
Pezzopane, J.R.M., Nicodemo, M.L.F., Bosi, C., Garcia, A.R. and Lulu, J., 2019. Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Journal of Thermal Biology, 79, pp. 103–111. https://doi.org/10.1016/j.jtherbio.2018.12.015
Rovira, P.J. and Velazco, J.I., 2008. Cuantificando el estrés calórico en vacunos en pastoreo. Revista INIA, 16, pp. 10–13.
Salas-Rivera, R., Valdez-Aguilar, L.A., Alvarado-Camarillo, D., Rascón-Alvarado, E., Peña-Ramos, F.M. and González-Fuentes, J.A., 2020. Balance potasio: calcio, relación con el déficit de presión de vapor y la radiación fotosintéticamente activa en tomate de invernadero. Terra Latinoamericana, 38(2), pp. 301–311. https://doi.org/10.28940/terra.v38i2.589
Sanaullah, M., Chabbi, A., Girardin, C., Durand, J.L., Poirier, M. and Rumpel, C., 2014. Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant and Soil, 374(1–2), pp. 767–778. https://doi.org/10.1007/s11104-013-1890-y
Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C., Réale, D., Dochtermann, N. A., Garamszegi, L. Z., & Araya?Ajoy, Y. G. (2020). Robustness of linear mixed?effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11(9), pp. 1141–1152. https://doi.org/10.1111/2041-210X.13434
Schinato, F., Munka, M.C., Olmos, V. and Bussoni, A.T., 2022. Microclimate, forage production and carbon storage in a eucalypt-based silvopastoral system. Agriculture, Ecosystems & Environment, 344, p. 108290. https://doi.org/10.1016/j.agee.2022.108290
Sileshi, G., Mafongoya, P. and Nath, A., 2020. Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. In: Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges. Ed. Springer Nature.
Tajuddin, I., 1986. Integración de animales en plantaciones de caucho. Sistemas Agroforestales, 4, pp. 55–66.
Tropical Seeds LLC, n.d. Cayman® Brachiaria Hybrid cv. CIAT BR02/1752. Tropical Seeds. https://www.tropseeds.com/cay
Velasco, E., Verdecia, J., Medina, R. and Rodriguez, L., 2001. Variaciones en el microclima de un cafetal en dependencia de la exposición a la radiación solar en las condiciones del macizo de la Sierra Maestra. Cultivos Tropicales, 22(3), pp. 53–59.
Wang, W., Vinocur, B. and Altman, A., 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), pp. 1–14. https://doi.org/10.1007/s00425-003-1105-5
Zhang, T., Liu, Y., Zimini, Y., Yuan, L. and Wen, Z., 2024. Effects of soil moisture and atmospheric vapor pressure deficit on the temporal variability of productivity in Eurasian grasslands. Remote Sensing, 16(13), p. 2368. https://doi.org/10.3390/rs16132368
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer. https://doi.org/10.1007/978-0-387-87458-6
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.58057
DOI: http://dx.doi.org/10.56369/tsaes.5805
Copyright (c) 2025 Luis Alfredo Rodríguez Larramendi, Cesar Ivan Vázquez-Ramos, Miguel Angel Salas-Marina, Wel Olveín Cruz-Macías

This work is licensed under a Creative Commons Attribution 4.0 International License.