A SYSTEMATIC REVIEW ON THE EFFECTIVENESS OF KETOENOLS AND THEIR RESISTANCE MECHANISM ON PHYTOPHAGOUS MITES OF THE TETRANYCHIDAE FAMILY

Emanuel Hernández Núñez, Esau Ruiz Sanchez, Dany Alejandro Dzib Cauich, Marcos Cua Basulto

Abstract


Background. Ketoenol acaricides exert their action by inhibiting Acetyl-CoA carboxylase (ACC). These acaricides have been highly effective for the management of phytophagous mites, however, their intensive use has generated resistant populations, which is why it is necessary to know what resistance mechanisms could be involved in mites of the Tetranychidae family in greenhouse and field conditions. Methodology. A literature review of ketoenolic acaricides was performed in the following databases: Google academic, Science Direct & Springer, for which word combinations were used such as: ketoenolic acaricides, tetronic and tetramic acid, spiromesifen, spirodiclofen, effectiveness of ketoenols, resistance mechanisms. Based on these parameters, 68 bibliographic references were selected, taking into consideration whether the studies had been carried out from year 2000 until 2023. To process the data from the publications, it was organized in the Microsoft Office Excel® program, where the information related to the effectiveness of ketoenolic acaricides and the resistance mechanisms of mites of the Tetranychidae family were classified, analyzed and discussed. Main findings. The use of Ketoenolic acaricides are an effective alternative in suppressing the population density of phytophagous mites of the Tetranychidae family in greenhouses and fields, taking into account that they are effective when applied at low or intermediate doses; likewise, the effectiveness of ketoenolic acaricides is not affected if they are applied in greenhouse and field conditions since their effectiveness is greater than 85%. On the other hand, resistance to ketoenolic acaricides is mainly mediated by metabolic resistance, due to high levels of activity of detoxification enzymes (P-450 monooxygenases, esterases and glutathione S-transferases) that the selected populations present. Regarding resistance at the site of action, there are few recorded cases, therefore, it is not considered an important factor in resistance to ketoenol acaricides in Tetranychidae. Implications. It is essential to know the mechanism of resistance to acaricides in Tetranychidae management programs, establishing more efficient measures on the use of chemical acaricides, such as a good application of acaricides to crops and rotation of acaricides, in this way we will contribute to a lower resistance to mites. Conclusion. This review indicates that ketoenolic acaricides are effective for control in mites, however, resistance to ketoenols in mites of the Tetranychidae family is mediated in most cases by detoxification enzymes.

Keywords


spider mite; toxic effect; toxicology; acaricides.

Full Text:

PDF

References


Adesanya, A.W., Franco, E., Walsh, D.B., Lavine, M., Lavine, L. and Zhu, F., 2018. Phenotypic and Genotypic Plasticity of Acaricide Resistance in Populations of Tetranychus urticae (Acari: Tetranychidae) on Peppermint and Silage Corn in the Pacific Northwest. Journal of Economic Entomology, 111(6), pp. 2831-2843. https://doi.org/10.1093/jee/toy303

Adesanya, A.W., Beauchamp, M.J., Lavine, M.D., Lavine, L.C., Zhu, F. and Walsh, D.B., 2019. Physiological resistance alters behavioral response of Tetranychus urticae to acaricides. Scientific Reports, 9, pp. 19308. https://doi.org/10.1038/s41598 019-55708-4

Adesanya, A.W., Lavine, M.D., Moural, T.W., Lavine, L.C., Zhu, F. and Walsh, D.B., 2021. Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. Journal of Pest Science, 94(3), pp. 639–663. https://doi.org/10.1007/s10340-021-01342-x

Abu-Elheiga, L., Brinkley, W.R., Zhong, L., Chirala, S.S., Woldegiorgis, G. and Wakil, S.J., 2000. The subcellular localization of Acetyl-CoA carboxylase 2. Proceedings of the National Academy of Science, 97(4), pp. 1444-1449. https://doi.org/10.1073/pnas.97.4.1444

Alfaro-Valle, E., Martínez-Hernández, A., Otero-Colina, G. and Lara-Reyna, J., 2022. High susceptibility of Tetranychus merganser (Acari: Tetranychidae), an emergent pest of the tropical crop Carica papaya, towards Metarhizium anisopliae s.l. and Beauveria bassiana strains. PeerJ, 10, pp. e14064 http://doi.org/10.7717/peerj.14064

Azar, S.F., Gheibi, M., Hesami, S. and Ostovan, H., 2024. Lethal and sub-lethal effects of the insecticide spirotetramat on the life table parameters of the wheat aphid, Schizaphis graminum (Rondani) and its predator Hippodamia variegata Goeze. International Journal of Tropical Insect Science, 44, pp 807-819 https://doi.org/10.1007/s42690-024-01187-8

Badieinia, F., Khajehali, J., Nauen, R., Dermauw, W. and Van Leeuwen, T., 2020. Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in Iranian populations of Panonychus ulmi. Crop Protection, 134, pp. 105166. https://doi.org/10.1016/j.cropro.2020.105166

Badii, M.H., Landeros, J. and Cerna, E., 2010. Regulación Poblacional de Ácaros Plaga de Impacto Agrícola (Population Regulation of Pest Mites of Agricultural Significance). Daena: International Journal of Good Conscience, 5(1), pp. 270-302. http://www.spentamexico.org/v5-n1/5(1)270-302.pdf (Consulta 4-enero-2024).

Baladhiya, H.C., Patel, N.B., Joshi, V.I. and Acharya, R.R., 2018. Bio-efficacy of Spiromesifen 22.9 SC against Brinjal Mite, Tetranychus urticae Koch. International Journal of Current Microbiology and Applied Sciences, 7(7), pp. 1650-1656. https://doi.org/10.20546/ijcmas.2018.707.193

Botero-Posada, S.A., Álvarez-Del Castillo, X. and Ríos-Osorio, L.A., 2023. Sustainability in rural agri-food systems based on the understanding of their structural and functional characteristics: A systematic review. Tropical and Subtropical Agroecosystems, 26(2), pp. #065. http://dx.doi.org/10.56369/tsaes.4783

Bretschneider, T., Benet-Buchholz, J., Fischer, R. and Nauen, R., 2003. Spirodiclofen and spiromesifen- novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. CHIMIA International Journal for Chemistry, 57(11), pp. 697-701. https://doi.org/10.2533/000942903777678588

Bretschneider, T., Fischer, R., and Nauen, R., 2012. Tetronic Acid Insecticides and Acaricides Inhibiting Acetyl-CoA Carboxylase. Lamberth C. and Dinges J., eds. In Bioactive Heterocyclic Compound Classes: Agrochemicals. Wiley VCH and Publishing House, Weinheim. Pp. 265-278. https://doi.org/10.1002/9783527664412.ch21

Brück, E., Elbert, A., Fischer, R., Krueger, S., Kühnhold, J., Klueken, A., Nauen, R., Niebes, J.F., Reckmann, U., Schnorbach, H.J., Steffens, R. and Van Waetermeulen, X., 2009. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Protection, 28(10), pp. 838-844. https://doi.org/10.1016/j.cropro.2009.06.015

Brust, G.E., and Gotoh, T., 2018. Mites: biology, ecology, and management. In: Wakil W, Brust GE, Perring TM (eds,) Sustainable Managemen of Arthropod Pests of Tomato. Elsevier, London, pp.111-130. https://doi.org/10.1016/B978-0-12-802441-6.00005-X

CAB International. 2018. Tetranychus urticae (two-spotted spider mite. En línea: https://www.cabi.org/isc/datasheet/53366 (Consulta 04-marzo- 2024).

Çobano?lu, S and Güldali, K.B., 2019. Toxicity of spiromesifen on different developmental stages of two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Persian Journal of Acarology, 8(1), pp. 57-68. http://dx.doi.org/10.22073/pja.v8i1.39155

Cheng, LY., Hou, DY., Sun, QZ., Yu, SJ., Li, SC., Liu, HQ., Cong, L. and Ran, R., 2022. Biochemical and Molecular Analysis of Field Resistance to Spirodiclofen in Panonychus citri (McGregor). Insects, 13(11), pp.1011. https://doi.org/10.3390/insects13111011

Chinniah, C., Naveena, K., Irulandi S. and Shanthi, M., 2021. Field efficacy of acaricides against citrus leaf mite Panonychus citri Mcgregor on acid lime. Indian Journal of Entomology, 83(3), pp. 385-387. https://doi.org/10.5958/0974-8172.2020.00221.7

Cua-Basulto, M.E., Ruiz-Sánchez, E., Pérez-Gutiérrez, A., Martín-Mex, R., Nexticapan-Garcéz, Á. and Pérez-Brito, D., 2021. Effects of Acaricides on Oligonychus sp. and Compatibility with Predatory Mites Neoseiulus californicus and Phytoseiulus persimilis. Journal of Plant Diseases and Protection, 128, pp.1617-1625. https://doi.org/10.1007/s41348-021-00544-w

Cua-Basulto, M.E., Ruiz-Sánchez, E., Chan-Cupul, W., Reyes-Ramirez, A., Ballina-Gómez, H. and Hernández Núñez, E., 2022. Efecto de acaricidas químicos en la mortalidad de la araña roja Tetranychus urticae Koch (Acari: Tetranychidae). Tropical and Subtropical Agroecosystems, 25, pp. #040. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3964/1768 (Consulta 10-noviembre- 2023).

Dar, M.Y., Rao, R.J., Ramegowda, G.K. and Mittal, V., 2015. Biology and Demographic Parameters of European Red Mite, Panonychus ulmi Koch (Acari: Tetranychidae) on Mulberry in Kashmir Valley, India. International Journal of Zoological Research, 11 (3) pp. 76-88. https://doi.org/10.3923/ijzr.2015.76.88

De Andrade, D.J., Da Rocha, C.M., De Matos, S.T.S. and Zanardi, OZ., 2020. Oxymatrine-based bioacaricide as a management tool against Oligonychus ilicis (McGregor) (Acari: Tetranychidae) in coffee. Crop Protection, 134, pp. 105182. https://doi.org/10.1016/j.cropro.2020.105182

De Beer, B., Vandenhole, M., Njiru, C., Spanoghe, P., Dermauw, W. and Van Leeuwen, T., 2022. High-Resolution Genetic Mapping Combined with Transcriptome Profiling Reveals That Both Target-Site Resistance and Increased Detoxification Confer Resistance to the Pyrethroid Bifenthrin in the Spider Mite Tetranychus urticae. Biology, 11 (11), pp. 1630. https://doi.org/10.3390/biology11111630

De Rouck, S., Inak, E., Dermauw, W. and Van Leeuwen, T., 2023. A review of the molecular mechanisms of acaricide resistance in mites and ticks. Insect Biochemistry and Molecular Biology, 159, pp. 103981. https://doi.org/10.1016/j.ibmb.2023.103981

Dekeyser, M.A., 2005. Review. Acaricide mode action. Pest Management Science, 61(2), pp. 103-110. https://doi.org/10.1002/ps.994

Della, V.J.F., Van Leeuwen, T., Rossi, G.D. And Andrade, D.J., 2021. The role of detoxification enzymes in the susceptibility of Brevipalpus californicus exposed to acaricide and insecticide mixtures. Pesticide Biochemistry and Physiology, 175, pp. 104855. https://doi.org/10.1016/j.pestbp.2021.104855

Demard, E. and Qureshi, J.A., 2022. The Citrus Red Mite (Panonychus citri): A Pest of Citrus Crops. University of Florida, pp. ENSY2081. https://doi.org/10.32473/edis-in1367-2022

Demaeght, P., Dermauw, W., Tsakireli, D., Khajehali, J., Nauen, R., Tirry, L., Vontas, J., Lümmen, P. and Van Leeuwen, T., 2013. Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. Insect Biochemistry and Molecular Biology, 43(6), pp. 544-554. https://doi.org/10.1016/j.ibmb.2013.03.007

Díaz-Arias, K.V., Rodríguez-Maciel, J.C., Lagunes-Tejeda, A., Aguilar-Medel, S., Tejeda-Reyes, M.A. and Silva-Aguayo, G., 2019. Resistance to abamectin in field population of Tetranychus urticae Koch (Acari: Tetranychidae) associated with cut rose from state of México, México. Florida Entomologist, 102(2), pp. 428-430. https://doi.org/10.1653/024.102.0222

Dos Santos, A., Teixeira, V.A., Peres, F.O., Serafin, M.E., Neto, M.P. and Da Cunha Oliveira, C.A., 2014. Primeiro registro de Tetranychus urticae (Acari: Tetranychidae) em mudas de teca no Brasil. Brazilian Journal of Forestry Research, 34(78), pp. 165-167. https://doi.org/10.4336/2014.pfb.34.78.603.

Farahani, S., Bandani, A. and Eslami, S., 2018. Comparison of susceptibility of two Iranian populations of Tetranychus urticae Koch (Acari: Tetranychidae) to spirodiclofen. Persian Journal of Acarology, 7(3), pp. 279-287. http://dx.doi.org/10.22073/pja.v7i3.36682

Fasulo, T.R. And Denmark, H.A., 2000. Two spotted Spider Mite, Tetranychus urticae Koch (Arachnida: Acari: Tetranychidae). Entomology and Nematology Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, pp.1-5. https://entnemdept.ufl.edu/creatures/orn/twospotted_mite.htm (Consulta 13-feb-2024)

Feng, K., Yang, Y., Wen, X., Ou, S., Zhang, P., Yu, Q., Zhang, Y., Shen, G., Xu, Z., Li, J. and He, L., 2019. Stability of cyflumetofen resistance in Tetranychus cinnabarinus and its correlation with glutathione-S-transferase gene expression. Pest Management Science, 75, pp. 2802-2809. http://dx.doi.org/10.1002/ps.5392

Ferreira, C.B.S., Andrade, F.H.N., Rodrigues, A.R.S., Siquiera, H.A.A., and Gondim Jr, M.G.C., 2015. Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Protection, 67, pp. 77-83. https://doi.org/10.1016/j.cropro.2014.09.022

Fotoukkiaii, S.M., Wybouw, N., Kurlovs, A.H., Tsakireli, D., Pergantis, S.A., Clark, R.M., Vontas, J. and Van Leeuwen, T., 2021. High-resolution genetic mapping reveals cis-regulatory and copy number variation in loci associated with cytochrome P450-mediated detoxification in a generalist arthropod pest. PLoS Genetics, 17, pp. e1009422. https://doi.org/10.1371/journal.pgen.1009422

Gerson, U. and Weintraub, P.G., 2007. Mites for the control of pests in protected cultivation. Pest Management Science, 63(7), pp. 658-676. https://doi.org/10.1002/ps.1380

Georgescu, E., Caña, L. and Rasnoveanu, L., 2017. Results concerning testing of the spirotetramat active ingredient for controlling of two spotted spider mite (Tetranychus urticae Koch) at soybean crop in south-east of the Romania. Lucr?ri ?tiin?ifice, 60(1), pp. 103-108. https://repository.iuls.ro/xmlui/handle/20.500.12811/867 (Consulta 5-enero-2024)

Golec, J.R., Hoge, B. and Walgenbach, J.P., 2020. Effect of biopesticides on different Tetranychus urticae Koch (Acari: Tetranychidae) life stages. Crop Protection, 128, pp. 105015. https://doi.org/10.1016/j.cropro.2019.105015

Hemingway, J., 2000. The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochemistry and Molecular Biology, 30(11), pp. 1009-1015. https://doi.org/10.1016/S0965-1748(00)00079-5

Horowitz, R.A., Ghanim, M., Roditakis, M., Nauen, R. and Ishaaya, I., 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science, 93(12), pp. 893-910. https://doi.org/10.1007/s10340-020-01210-0

Inak, E., Alpkent, Y.N., Çobano?lu, S., Toprak, U. and Van Leeuwen, T., 2022. Incidence of spiromesifen resistance and resistance mechanisms in Tetranychus urticae populations collected from strawberry production areas in Turkey. Crop Protection, 160(3), pp. 106049. https://doi.org/10.1016/j.cropro.2022.106049

Inak, E., Demirci, B., Vandenholeb, M., Söylemezo?lu, G., Van Leeuwen, T. and Topark U., 2023. Molecular mechanisms of resistance to spirodiclofen and spiromesifen in Tetranychus urticae. Crop Protection, 172, pp. 106343. https://doi.org/10.1016/j.cropro.2023.106343

Joshi, N.K., Phan, N.T. And Biddinger, D.J., 2023. Management of Panonychus ulmi with Various Miticides and Insecticides and Their Toxicity to Predatory Mites Conserved for Biological Mite Control in Eastern U.S. Apple Orchards. Insects, 14(3), pp. 288. https://doi.org/10.3390/insects14030228

Kaundun, S.S., 2014. Resistance to acetyl-CoA carboxylase-inhibiting herbicides. Pest Management Science, 70(9), pp. 1405-1417. https://doi.org/10.1002/ps.3790

Khajehali, J., Van Nieuwenhuyse, P., Demaeght, P., Tirry, L. and Van Leeuwen, T., 2011. Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in the Netherlands. Pest Management Science, 67(11), pp. 1424-1433. https://doi.org/10.1002/ps.2191

Kumari, S., Chauhan, U., Kumari, A. and Nadda, G., 2017. Comparative toxicities of novel and conventional acaricides against different stages of Tetranychus urticae Koch (Acarina: Tetranychidae). Journal of the Saudi Society of Agricultural Sciences, 16(2), pp.191-196. https://doi.org/10.1016/j.jssas.2015.06.003

Lee, S., Son, H., Lee, J., Min, K., Choi, G.J., Kim, J.C and Lee, Y.W., 2011. Functional Analyses of Two Acetyl Coenzyme A Synthetases in the Ascomycete Gibberella zeae. Eukaryotic Cell, 10(8), pp. 1043-1052. https://doi.org/10.1128/EC.05071-11

Liu, Z., Lei, Q., Li, Y., Xiong, L., Song, H. and Wang, Q., 2011. Design, Synthesis, Structure, and Acaricidal/Insecticidal Activity of Novel Spirocyclic Tetronic Acid Derivatives Containing an Oxalyl Moiety. Journal of Agricultural and Food Chemistry, 59(23) pp. 12543-12549. https://dx.doi.org/10.1021/jf203722z

Liu, N., 2015. Insecticide Resistance in Mosquitoes: Impact, Mechanisms, and Research Directions. Annual Review of Entomology, 60(1), pp. 537-559. https://doi.org/10.1146/annurev-ento-010814-020828

Lopéz-Manzanares, B., Martínez-Villar, E., Marco-Mancebón, V.S. and Pérez-Moreno, I., 2022. Compatibility of the entomopathogenic fungus Beauveria bassiana with etoxazole, spirodiclofen and spiromesifen against Tetranychus urticae. Biological Control, 169 pp. 104892. https://doi.org/10.1016/j.biocontrol.2022.104892

López-Bautista, E., Santillán-Galicia, M.T., Suárez-Espinosa, J., Cruz-Huerta, N., Bautista-Martínez, N. and Alcántara-Jiménez, J.A., 2016. Damage caused by mite Tetranychus merganser (Trombidiformes: Tetranychidae) on Carica papaya (Violales: Caricaceae) plants and effect of two species of predatory mite. International Journal of Acarology, 42(6), pp. 303-309. http://dx.doi.org/10.1080/01647954.2016.1184714

Lümmen, P., Khajehali, J., Luther, K. and Van Leeuwen, T., 2014. The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite Acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction. Insect Biochemistry and Molecular Biology, 55, pp. 1-8. https://doi.org/10.1016/j.ibmb.2014.09.010

Mahendiran, G. and Ganie, S.A., 2018. Population dynamics, life history and efficacy of acaricides against European red mite, Panonychus ulmi (Koch), on almond and apple. African Entomology, 26(2), pp. 333-336. https://doi.org/10.4001/003.026.0333

Marcic, D., Mutavdzic, S., Medjo, I., Prijovic, M. and Peric, P., 2011a. Field and greenhouse evaluation of spirodiclofen against Panonychus ulmi and Tetranychus urticae (Acari: Tetranychidae) in Serbia. Zoosymposia. 6(1), pp. 93-98. https://doi.org/10.11646/zoosymposia.6.1.16

Marcic, D., Peric, P., Petronijevic, S., Prijovic, M. and Drobnjakovic, T., 2011b. Cyclic Ketoenols – Acaricides and Insecticides with a Novel Mode of Action. Pesticides & Phytomedicine, 26(3), pp. 185-195. https://doi.org/10.2298/PIF1103185M

Marcic, D., 2012. Acaricides in modern management of plant-feeding mites. Journal of Pest Science, 85(4), pp. 395-408. https://doi.org/10.1007/s10340-012-0442-1

Phukan, B., Rahman, S. and Bhuyan, K.K., 2017. Effects of botanicals and acaricides on management of Tetranychus urticae (Koch) in tomato. Journal of Entomology and Zoology Studies, 5(3), pp. 241-246. https://www.entomoljournal.com/archives/2017/vol5issue3/PartD/5-2-135-954.pdf (Consulta 19-enero-2024)

Parvy, J.P., Napal, L., Rubin, T., Poidevin, M., Perrin, L., Wicker-Thomas, C., Montagne, J. and Beitel, G., 2012. Drosophila melanogaster Acetyl-CoA-carboxylase sustains a fatty Acid–- dependent remote signal to waterproof the respiratory system. PLoS Genet, 8(8), pp. e1002925. https://doi.org/10.1371/journal.pgen.1002925

Panini, M., Manicardi, G.C., Moores, G.D. And Mazzoni, E., 2016. An overview of the main pathways of metabolic resistance in insects. Invertebrate Survival Journal, 13(1), pp. 326-335. https://doi.org/10.25431/1824-307X/isj.v13i1.326-335

Pavlidi, N., Khalighi, M., Myridakis, A., Dermauw, W., Wybouw, N., Tsakireli, D., Stephanou, E.G., Labrou, N.E., Vontas, J and Van Leeuwen, T., 2016. A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochemistry and Molecular Biology, 80, pp. 101-115. https://doi.org/10.1016/j.ibmb.2016.12.003

RajashekhaRappa, K., Ambarish, S., Ramesh, M.M. and Onkarappa, S., 2023. Efficacy of acaricides against red spider mite Tetranychus urticae infesting yard long bean. Indian Journal of Entomology, 85(2), 400-402. https://doi.org/10.55446/IJE.2022.793

Ranson, H., Claudianos, C., Ortelli, F. and Hemingwat, J., 2002. Evolution of supergene families associated with insecticide resistance. Science, 298, pp. 179-181. https://doi.org/10.1126/science.1076781

Rani, P.S. and Jandial, V.K., 2009. Comparative Biology of Carmine Spider Mite, Tetranychus Cinnabarinus Boisduval (Prostigmata: Tetranychidae) Infesting Marigold. Indian Journal of Entomology, 71, pp. 334-338. https://www.cabidigitallibrary.org/doi/full/10.5555/20113370889 (Consulta 17-enero-2024).

Raudonis, L.; 2006. Comparative toxicity of spirodiclofen and lambdacihalotrin to Tetranychus urticae, Tarsonemus pallidus and predatory mite Amblyseius andersoni in a strawberry site under field conditions. Agronomy Research, 4, pp. 317-322. https://www.cabidigitallibrary.org/doi/full/10.5555/20063187360 (Consulta 09-diciembre-2023).

Reyes-Pérez, N., Villanueva-Jiménez, J.A., Vargas-Mendoza, M.C., Cabrera-Mireles, H. and Otero-Colina, G., 2013. Parámetros poblacionales de Tetranychus merganser Boudreaux (Acari: Tetranychidae) en papayo (Carica papaya l.) a diferentes temperaturas. Agrociencia, 47(2), pp. 147-157. https://www.scielo.org.mx/pdf/agro/v47n2/v47n2a4.pdf (Consulta 14-noviembre-2023).

Riga, M., Tsakireli, D., Ilias, A., Morou, E., Myridakis, A., Stephanou, E.G., Nauen, R., Dermauw, W., Van Leeuwen, T., Paine, M. and Vontas, J., 2014. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 46, pp. 43-53. https://doi.org/10.1016/j.ibmb.2014.01.006

Rincón, R.A., Rodríguez, D. and Coy-Barrera, E., 2019. Botanicals Against Tetranychus urticae Koch Under Laboratory Conditions: A Survey of Alternatives for Controlling Pest Mites. Plants, 8(8), pp. 272. https://doi.org/10.3390/plants8080272

Rocha, C., Della, V.J., Savi, P., Omoto, C. and Andrade, D., 2021. Resistance to spirodiclofen in Brevipalpus yothersi (Acari: Tenuipalpidae) from Brazilian citrus groves: detection, monitoring, and population performance. Pest Management Science, 77(7), pp. 3099-3106. https://doi.org/10.1002/ps.6341

Rodríguez, N.S., Ojeda, C.M., Ramirez, S.E. and Barranco, F.J.E., 2022. Tetranychus merganser Boudreaux (Acari: Tetranychidae) asociada a Moringa oleifera Lam. (Moringaceae) y Capsicum annuum L. (Solanaceae) bajo condiciones de invernadero en el sur de la Ciudad de México. Sociedades rurales, produccion y medio ambiente, 22(43), pp. 76-83. https://sociedadesruralesojs.xoc.uam.mx/index.php/srpma/article/view/459/430 (Consulta 25-octubre-2023).

Sparks, T.C., Crossthwaite, A.J., Nauen, R., Banba, S., Cordova, D., Earley, F., Ebbinghaus-Kintscher, U., Fujioka, S., Hirao, A., Karmon, D., Kennedy, R., Nakao, T., Popham, H.J.R., Salgado, V., Watson, G.B., Wedel, B.J. and Wessels, F.J. 2020. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification - a tool for resistance management. Pesticide Biochemistry and Physiology. 167: pp. 104587. https://doi.org/10.1016/j.pestbp.2020.104587

Segura-Martinez M.T.J., Ordaz-Silva S., Hernández-Juárez A., Heinz-Castro R.T.Q., Mora-Ravelo, S.G., Chacón-Hernández, J.C., 2023. Life Table Parameters of Tetranychus merganser Boudreaux (Acari: Tetranychidae) on Five Host Plants. Insects, 14(5), pp. 473. https://doi.org/10.3390/insects14050473

Singh, R.H., Paramjit, K., and Damanpreet., 2020. Bioefficacy of oberon 22.9% (spiromesifen) against red spider mite, Tetranychus urticae Koch in okra and effect on its natural enemies. Journal of Entomology and Zoology Studies, 8(2) pp. 1740-1743. https://www.entomoljournal.com/archives/2020/vol8issue2/PartAD/8-2-284-193.pdf (Consulta 15-octubre-2023).

Srinivasa, R.D., Nagaraj, R., Pusha, L.M. and Chowdary, R., 2014. Comparative evaluation of novel acaricides against two spotted spider mite. Tetranychus urticae koch. infesting cucumber (Cucumis sativus) under laboratory and green house conditions. The Bioscan, 9(3). pp.1001-1005. https://thebioscan.com/index.php/pub/article/view/780/744 (Consulta 11-octubre-2023).

Shen, N., Li, Y., Leviticus, K., Chang, X.L., Tang, T., Cui, L., Han, Z.J., and Zhao, C.Q., 2021. Effect of broflanilide on the phytophagous mite Tetranychus urticae and the predatory mite Typhlodromips swirskii. Pets Management Science, 77, pp. 2964-2970. https://doi.org/0.1002/ps.6335

Sood, A.K., Sood, S. and Singh, V., 2015. Efficacy evaluation of spiromesifen against red spider mite, Tetranychus urticae Koch on parthenocarpic cucumber under protected environment. An International Quaterly Journal of Life Sciences, 10(3), pp. 963-966. https://thebioscan.com/index.php/pub/article/view/1283 (Consulta 11-noviembre-2023).

Schmidt-Jeffris, R., Coffey, J.L., Miller, G. and Farran, M., 2021. Residual Activity of Acaricides for Controlling Spider Mites in Watermelon and Their Impacts on Resident Predatory Mites. Journal of Economic Entomology, 114(2), pp. 818-827. https://doi.org/10.1093/jee/toaa320

Subramanian, V., Dubini, A., and Seibert, M., 2012. Metabolic Pathways in Green Algae with Potential Value for Biofuel Production. Gordon R. and Seckbach J., eds. In The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, Dordrecht: Springer. pp 399-422. https://doi.org/10.1007/978-94-007-5110-1_22

Talib, Y.J., Abass, M.H. and Thamer, N.K. 2023. Efficiency of some jasmonic acid concentrations on mortality of two-spotted spider mite Tetranychus urticae Koch on eggplant. IOP Conference Series: Earth and Environmental Science. 1225(1), pp. 012065. https://doi.org/10.1088/1755-1315/1225/1/012065

Tong, L., 2005. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cellular and Molecular Life Science, 62(16), pp. 1784-1803. https//doi.org/10.1007/s00018-005-5121-4

Tong, L. and Harwood, H.J., 2006. Acetyl-coenzyme A carboxylases: Versatile targets for drug discovery. Journal Cellular Biochemistry, 99(6), pp. 1476-1488. https://doi.org/10.1002/jcb.21077

Tong, L., 2013. Structure and function of biotin-dependent carboxylases. Cellular and Molecular Life Science, 70(5), pp. 863-891. https://doi.org/10.1007/s00018-012-1096-0

Tong, S.M. and Feng, M.G., 2016. Laboratory and field evaluations of camptothecin sodium salt against phytophagous mites. Pest Management Science, 72 (3), pp. 629-636. https://doi.org/10.1002/ps.4033

Tong, L., 2017. Striking Diversity in Holoenzyme Architecture and Extensive Conformational Variability in Biotin-Dependent Carboxylases. Advances in Protein Chemistry and Structural Biology, 109, pp. 161-194. https://doi.org/10.1016/bs.apcsb.2017.04.006

Turan, I., Yorulmaz, S.S. And Ay, R., 2016. Antalya ?li Kumluca ?lçesi Kavun Seralar?ndan Toplanan Tetranychus urticae (Koch) (Acari: Tetranychidae) Popülasyonlar?n?n Abamectin ve Spirodiclofen'e Kar?? Direnç Düzeyleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(1), pp. 254-261. https://dergipark.org.tr/en/download/article-file/234234 (Consulta 23-octubre-2023).

Van Pottelberge, S., Van Leeuwen, T., Khajehali, J. and Tirry, L., 2009. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Management Science, 65(4), pp. 358-366. https://doi.org/10.1002/ps.1698

Van Leeuwen, T., Vontas, J., Tsagkarakou, A. and Tirry, L., 2009. Mechanisms of Acaricide Resistance in the Two-Spotted Spider Mite Tetranychus urticae. Ishaaya I and Horowitz AR., eds. In Biorational Control of Arthropod Pests. Springer Science+Business Media, pp. 347-393. https://doi.org/10.1007/978-90-481-2316-2_14

Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W.and Tirry, L., 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochemistry. Molecular Biology, 40(8), pp. 563-572. https://doi.org/10.1016/j.ibmb.2010.05.008

Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R. and Dermauw, W., 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 121, pp. 12-21. https://doi.org/10.1016/j.pestbp.2014.12.009

Wang, Z., Cang, T., Wu, S., Wang, X., Qi, P., Wang, X. and Zhao, X., 2018. Screening for suitable chemical acaricides against two-spotted spider mites, Tetranychus urticae, on greenhouse strawberries in China. Ecotoxicology and Environmental Safety, 163, pp. 63-68. https://doi.org/10.1016/j.ecoenv.2018.07.058

Wei, P., Shi, L., Shen, G., Xu, Z., Liu, J., Pan, Y. and He, L., 2016. Characteristics of carboxylesterase genes and their expression-level between acaricide-susceptible and resistant Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology,131, pp. 87-95. https://doi.org/10.1016/j.pestbp.2015.12.007

Wei, P., Demaeght, P., De Schutter, K., Grigoraki, L., Labropoulou, V., Riga, M., Vontas, J. Nauen, R., Dermauw, W. and Van Leeuwen, T., 2020. Overexpression of an alternative allele of carboxyl/choline esterase 4 (CCE04) of Tetranychus urticae is associated with high levels of resistance to the keto-enol acaricide spirodiclofen. Pest Management Science, 76(3), pp. 1142-1153. https://doi.org/10.1002/ps.5627

Wu, M., Adesanya, A.W., Morales, M.A., Walsh, D.B., Lavine, L.C., Lavine, M.D. and Zhu, F., 2018. Multiple acaricide resistance and underlying mechanisms in Tetranychus urticae on hops. Journal of Pest Science, 92(2), pp. 543-555. https://doi.org/10.1007/s10340-018-1050-5

Wybouw, N., Kosterlitz, O., Kurlovs, A.H., Bajda, S., Greenhalgh, R., Snoeck, S., Bui, H., Bryon, A., Dermauw, W., Van Leeuwen, T. and Clark, R.M., 2019. Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae. Genetics, 211(4), pp. 1409-1427. https://doi.org/10.1534/genetics.118.301803

Ya-Ying, L., Ming-Xiu, L., Jin-Ge, Y., Tochukwu, T.O., Han-Qiu, C. and Huai L., 2021. Evaluation of a philic egg-consumption predatory thrips Scolothrips takahashii for control of the citrus red mite Panonychus citri. Crop Protection, 140, pp. 105421. https://doi.org/10.1016/j.cropro.2020.105421

Yang, Y., Luo, X., Wei, W., Fan, Z., Huang, T. and Pan, X., 2020. Analysis of leaf morphology, secondary metabolites and proteins related to the resistance to Tetranychus cinnabarinus in cassava (Manihot esculenta Crantz). Scientific Reports, 10(1), pp. 14197. https://doi.org/10.1038/s41598-020-70509-w

Yorulmaz, S.S. y Kaplan, B.K., 2014. Isparta ili merkez ilçesinde domates seralar?ndan toplanan Tetranychus urticae Koch (Acari: Tetranychidae) popülasyonlar?n?n baz? akarisitlere kar?? direnç düzeyleri ve detoksifikasyon enzimleri. Turkish Bulletin of Entomology, 4(3), pp. 185-195. https://dx.doi.org/10.16969/teb.99216

Yu, S., Tian, H., Yang, J., Ding, L., Chen, F., Li, X., Yue, J., Liu, H., Ran, C., 2015. Cloning of acetyl CoA carboxylase DNA and the effects of spirodiclofen on the expression of acetyl CoA carboxylase mRNA in Panonychus citri. Entomologia Experimentalis et Applicata, 156(1), pp. 52-58. https://doi.org/10.1111/eea.12314

Zanardi, O.Z., Ribeiro, L.P., Ansante, T.F., Santos, M.S., Bordini, G.P., Yamamoto, P.T. And Vendramim, J.D., 2015a. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Protection, 67, pp. 160-167. https://doi.org/10.1016/j.cropro.2014.10.010

Zanardi, O.Z., Bordini, G.P., Franco, A.A., De Morais, M.R. and Yamamoto, P.T., 2015b. Development and reproduction of Panonychus citri (Prostigmata: Tetranychidae) on different species and varieties of citrus plants. Experimental and Applied Acarology, 67, pp. 565-581. https://doi.org/10.1007/s10493-015-9968-2

Zhao, J.H., Wang, Z.C., Ji, M.H., Cheng, J.L., Zhu, G.N. And Yu, C.M., 2011. Synthesis and bioactivity evaluation of novel spiromesifen derivatives. Pest Management Science, 68(1), pp. 10-15. https://doi.org/10.1002/ps.2248




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.57214

DOI: http://dx.doi.org/10.56369/tsaes.5721



Copyright (c) 2025 Emanuel Hernández Núñez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.