USES OF CANNABIS IN THE BIOREMEDIATION OF SOILS CONTAMINATED WITH HEAVY METALS
Abstract
Keywords
Full Text:
PDFReferences
Alegbeleye, O., Opeolu, B. and Jackson, V., 2017. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environmental Management, 60, pp. 758-783. https://doi.org/10.1007/s00267-017-0896-2
Ahmad, I., Gul, I., Irum, S., Manzoor, M. and Arshad, M., 2023. Accumulation of heavy metals in wild plants collected from the industrial sites-potential for phytoremediation. International Journal of Environmental Science and Technology, 20(3), 5441-5452. https://doi.org/10.1007/s13762-022-04340-3
Ángeles-López, G., Brindis, F., Cristians-Niizawa, S. and Ventura-Martínez, R., 2014. Cannabis sativa L., una planta singular. Revista Mexicana de Ciencias Farmacéuticas, 45(4). http://www.redalyc.org/articulo.oa?id=57940028004
Amendola, G., Bocca, B., Picardo, V., Pelosi, P., Battistini, B., Ruggieri, F., Attard-Barbini, D., De Vita, D., Madia, V.N., Messore, A., Di Santo, R. and Costi, R., 2021. Toxicological aspects of cannabinoid, pesticide and metal levels detected in light Cannabis inflorescences grown in Italy. Food and Chemical Toxicology, 156, pp. 112447. https://doi.org/10.1016/J.FCT.2021.112447
Azhar, U., Ahmad, H., Shafqat, H., Babar, M., Shahzad-Munir, H., Sagir, M., Arif, M., Hassan, A., Rachmadona, N., Rajendran, S., Mubashir, M. and Khoo, K.S., 2022. Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environmental Research, 214, pp. 113918. https://doi.org/10.1016/J.ENVRES.2022.113918
Chandra, R., Yadav, S. and Yadav, S., 2017. Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecological Engineering, 98, pp. 134–145. https://doi.org/10.1016/j.ecoleng.2016.10.017
De Vos, B., Souza, M.F., Michels, E. and Meers, E., 2022. Industrial hemp (Cannabis sativa L.) in a phytoattenuation strategy: Remediation potential of a Cd, Pb and Zn contaminated soil and valorization potential of the fibers for textile production. Industrial Crops and Products, 178, pp. 114592. https://doi.org/10.1016/j.indcrop.2022.114592
Ferrarini, A., Fracasso, A., Spini, G., Fornasier, F., Taskin, E., Fontanella, M.C., Beone, G.M., Amaducci, S. and Puglisi, E., 2021. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Frontiers in Microbiology, 12, pp. 1–20. https://doi.org/10.3389/fmicb.2021.645893
Gali?, M., Per?in, A., Zgorelec, Ž. and Kisi?, I., 2019. Evaluation of heavy metals accumulation potential of hemp (Cannabis sativa L.). Journal of Central European Agriculture, 20(2), pp. 700–711. https://doi.org/10.5513/JCEA01/20.2.2201
Ghule, M.R. and Ramteke, P.K., 2022. Chapter 6 – Soil chemical pollution and remediation. In: M. Naem, T. Aftab, A.A. Ansari, S.S. Gill, A. Mancovei, eds. Hazardous and Trace Materials in Soil and Plants: Sources, Effects, and Management. London: Academic Press. pp. 57–71. https://doi.org/10.1016/B978-0-323-91632-5.00025-2
Golia, E.E., Bethanis, J., Ntinopoulos, N., Kaffe, G.G., Komnou, A.A. and Vasilou, C., 2023. Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustainable Chemistry and Pharmacy, 31, pp. 100961. https://doi.org/10.1016/J.SCP.2022.100961
Grifoni, M., Rosellini, I., Petruzzelli, G., Pedron, F., Franchi, E. and Barbafieri, M., 2021. Application of sulphate and cytokinin in assisted arsenic phytoextraction by industrial Cannabis sativa L. Environmental Science and Pollution Research, 28(34), pp. 47294–47305. https://doi.org/10.1007/s11356-021-14074-3
Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A. and Aryal, N., 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, pp. 100203. https://doi.org/10.1016/J.ENVADV.2022.100203
Luyckx, M., Blanquet, M., Isenborghs, A., Guerriero, G., Bidar, G., Waterlot, C., Douay, F. and Lutts, S., 2022. Impact of Silicon and Heavy Metals on Hemp (Cannabis sativa L.) Bast Fibres Properties: An Industrial and Agricultural Perspective. International Journal of Environmental Research, 16(82), pp. 1–14. https://doi.org/10.1007/s41742-022-00446-1
Ma?kowski, J., Ko?odziej, J., Pude?ko, K. and Koz?owski, R.M., 2020. Bast fibres: the role of hemp (Cannabis sativa L.) in remediation of degraded lands. In: R.M. Koz?owski, M. Mackiewicz-Talarczyk, eds. Handbook of Natural Fibres: Volume 2: Processing and Applications. London: Woodhead Publishing. pp. 393–417. https://doi.org/10.1016/B978-0-12-818782-1.00011-0
Mendarte-Alquisira, C., Alarcón, A., Ferrera-Cerrato, R. and Mendarte-Alquisira, C., 2021. Fitorremediación: alternativa biotecnológica para recuperar suelos contaminados con DDT. Una revisión. TIP. Revista Especializada en Ciencias Químico-Biológicas, 24, pp. 1-15. https://doi.org/10.22201/FESZ.23958723E.2021.326
Moscariello, C., Matassa, S., Esposito, G. and Papirio, S., 2021. From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resources, Conservation and Recycling, 175, pp. 105864. https://doi.org/10.1016/J.RESCONREC.2021.105864
Mwelwa, S., Chungu, D., Tailoka, F., Beesigamukama, D. and Tanga, C.M., 2023. Data to understand the biotransfer of heavy metals along the soil-plant-edible insect-human food chain in Africa. Data in Brief, 49, pp. 109434. https://doi.org/10.1016/J.DIB.2023.109434
Pandey, V.C., Mahajan, P., Saikia, P. and Praveen, A., 2022. Chapter 5 – Sustainability of fiber crop production from polluted land. In: V.C. Pandey, P. Mahajan, P. Saikia, A. Praveen, eds. Fiber Crop-Based Phytoremediation. London: Elsevier. pp. 115–156. https://doi.org/10.1016/B978-0-12-823993-3.00006-1
Picchi, C., Giorgetti, L., Morelli, E., Landi, M., Rosellini, I., Grifoni, M., Franchi, E., Petruzzelli, G. and Barbafieri, M., 2022. Cannabis sativa L. and Brassica juncea L. grown on arsenic-contaminated industrial soil: potentiality and limitation for phytoremediation. Environmental Science and Pollution Research, 29(11), pp. 15983–15998. https://doi.org/10.1007/s11356-021-16673-6
Prieto-Méndez, U. and González-Ramírez, C., Román-Gutiérrez, A., Prieto-García, F., 2009. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems, 10(1), pp. 29–44. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/25
Pude?ko, K., Ko?odziej, J. and Ma?kowski, J., 2021. Restoration of minesoil organic matter by cultivation of fiber hemp (Cannabis sativa L.) on lignite post-mining areas. Industrial Crops and Products, 171, pp. 113921. https://doi.org/10.1016/j.indcrop.2021.113921
Small, E., 2015. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. The Botanical Review, 81(3), pp. 189–294. https://doi.org/10.1007/S12229-015-9157-3
Song, P., Xu, D., Yue, J., Ma, Y., Dong, S. and Feng, J., 2022. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Science of The Total Environment, 838, pp. 156417. https://doi.org/10.1016/j.scitotenv.2022.156417
Sun, S., Fan, X., Feng, Y., Wang, X., Gao, H. and Song, F., 2023. Arbuscular mycorrhizal fungi influence the uptake of cadmium in industrial hemp (Cannabis sativa L.). Chemosphere, 330, pp. 138728. https://doi.org/10.1016/j.chemosphere.2023.138728
Testa, G., Corinzia, S.A., Cosentino, S.L. and Ciaramella, B.R., 2023. Phytoremediation of Cadmium-, Lead-, and Nickel-Polluted Soils by Industrial Hemp. Agronomy, 13(4), 995. https://doi.org/10.3390/agronomy13040995
Ullah, R., Hadi, F., Ahmad, S., Jan, A.U. and Rongliang, Q., 2019. Phytoremediation of Lead and Chromium Contaminated Soil Improves with the Endogenous Phenolics and Proline Production in Parthenium, Cannabis, Euphorbia, and Rumex Species. Water, Air, and Soil Pollution, 230(40), pp. 1-13. https://doi.org/10.1007/s11270-019-4089-x
Vaverková, M.D., Zloch, J., Adamcová, D., Radziemska, M., Vyhnánek, T., Trojan, V., Winkler, J., ?or?evi?, B., Elbl, J. and Brtnický, M., 2019. Landfill Leachate Effects on Germination and Seedling Growth of Hemp Cultivars (Cannabis sativa L.). Waste and Biomass Valorization, 10(2), 369–376. https://doi.org/10.1007/s12649-017-0058-z
Wielgusz, K., Praczyk, M., Irzykowska, L. and ?wierk, D., 2022. Fertilization and soil pH affect seed and biomass yield, plant morphology, and cadmium uptake in hemp (Cannabis sativa L.). Industrial Crops and Products, 175, pp. 114245. https://doi.org/10.1016/j.indcrop.2021.114245
Yan, F., Li, N., Wang, J. And Wu, H., 2023. Ecological footprint model of heavy metal pollution in water environment based on the potential ecological risk index. Journal of Environmental Management, 344, pp. 118708. https://doi.org/10.1016/j.jenvman.2023.118708
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.56937
DOI: http://dx.doi.org/10.56369/tsaes.5693
Copyright (c) 2024 Manuela Cáceres-Cáceres, Juan David Daza-Burgos, Jose David Serna-Morales, Leonardo Alberto Rios-Osorio

This work is licensed under a Creative Commons Attribution 4.0 International License.