USES OF CANNABIS IN THE BIOREMEDIATION OF SOILS CONTAMINATED WITH HEAVY METALS

Manuela Cáceres-Cáceres, Juan David Daza-Burgos, Jose David Serna-Morales, Leonardo Alberto Rios-Osorio

Abstract


Background. Bioremediation of soils contaminated with heavy metals is a vital area of research given the growing concern about environmental contamination. However, understanding of the ability of Cannabis sativa for this task has been limited. Objective. undertake a thorough analysis of the existing scientific literature to assess the role of Cannabis systematically and critically in the bioremediation of soils contaminated with heavy metals, emphasizing its effectiveness and potential applicability in restoring ecosystems affected by pollution. Methodology. A systematic review of the scientific literature was carried out, consulting databases such as ScienceDirect, Scopus, and SpringerLink. Relevant studies investigating the ability of Cannabis sativa to accumulate heavy metals and the factors affecting this process were selected and analyzed. Results. It was found that Cannabis sativa, especially the sativa variety and subvarieties such as Henola and Bialobrzeskie, exhibit a notable hyperaccumulation capacity of heavy metals, especially in roots and stems. Factors such as soil type, metal concentration, and weather conditions affect its effectiveness. Implications. These findings have important implications for agriculture and environmental management, offering a sustainable and less invasive alternative for the remediation of contaminated soils. However, the need to balance bioremediation with agricultural production and to properly manage the resulting waste is highlighted. Conclusions. Cannabis sativa shows promising potential in the bioremediation of soils contaminated with heavy metals. Its hyperaccumulating capacity and the factors that influence its effectiveness offer significant opportunities for environmental restoration, remediation and sustainable resource management. The importance of future research is emphasized to maximize its effectiveness and minimize its impact on agricultural production.

Keywords


Cannabis sativa; Bioremediation; Heavy metals; Phytoremediation; Metal accumulation; Contaminated soils.

Full Text:

PDF

References


Alegbeleye, O., Opeolu, B. and Jackson, V., 2017. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environmental Management, 60, pp. 758-783. https://doi.org/10.1007/s00267-017-0896-2

Ahmad, I., Gul, I., Irum, S., Manzoor, M. and Arshad, M., 2023. Accumulation of heavy metals in wild plants collected from the industrial sites-potential for phytoremediation. International Journal of Environmental Science and Technology, 20(3), 5441-5452. https://doi.org/10.1007/s13762-022-04340-3

Ángeles-López, G., Brindis, F., Cristians-Niizawa, S. and Ventura-Martínez, R., 2014. Cannabis sativa L., una planta singular. Revista Mexicana de Ciencias Farmacéuticas, 45(4). http://www.redalyc.org/articulo.oa?id=57940028004

Amendola, G., Bocca, B., Picardo, V., Pelosi, P., Battistini, B., Ruggieri, F., Attard-Barbini, D., De Vita, D., Madia, V.N., Messore, A., Di Santo, R. and Costi, R., 2021. Toxicological aspects of cannabinoid, pesticide and metal levels detected in light Cannabis inflorescences grown in Italy. Food and Chemical Toxicology, 156, pp. 112447. https://doi.org/10.1016/J.FCT.2021.112447

Azhar, U., Ahmad, H., Shafqat, H., Babar, M., Shahzad-Munir, H., Sagir, M., Arif, M., Hassan, A., Rachmadona, N., Rajendran, S., Mubashir, M. and Khoo, K.S., 2022. Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environmental Research, 214, pp. 113918. https://doi.org/10.1016/J.ENVRES.2022.113918

Chandra, R., Yadav, S. and Yadav, S., 2017. Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecological Engineering, 98, pp. 134–145. https://doi.org/10.1016/j.ecoleng.2016.10.017

De Vos, B., Souza, M.F., Michels, E. and Meers, E., 2022. Industrial hemp (Cannabis sativa L.) in a phytoattenuation strategy: Remediation potential of a Cd, Pb and Zn contaminated soil and valorization potential of the fibers for textile production. Industrial Crops and Products, 178, pp. 114592. https://doi.org/10.1016/j.indcrop.2022.114592

Ferrarini, A., Fracasso, A., Spini, G., Fornasier, F., Taskin, E., Fontanella, M.C., Beone, G.M., Amaducci, S. and Puglisi, E., 2021. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Frontiers in Microbiology, 12, pp. 1–20. https://doi.org/10.3389/fmicb.2021.645893

Gali?, M., Per?in, A., Zgorelec, Ž. and Kisi?, I., 2019. Evaluation of heavy metals accumulation potential of hemp (Cannabis sativa L.). Journal of Central European Agriculture, 20(2), pp. 700–711. https://doi.org/10.5513/JCEA01/20.2.2201

Ghule, M.R. and Ramteke, P.K., 2022. Chapter 6 – Soil chemical pollution and remediation. In: M. Naem, T. Aftab, A.A. Ansari, S.S. Gill, A. Mancovei, eds. Hazardous and Trace Materials in Soil and Plants: Sources, Effects, and Management. London: Academic Press. pp. 57–71. https://doi.org/10.1016/B978-0-323-91632-5.00025-2

Golia, E.E., Bethanis, J., Ntinopoulos, N., Kaffe, G.G., Komnou, A.A. and Vasilou, C., 2023. Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustainable Chemistry and Pharmacy, 31, pp. 100961. https://doi.org/10.1016/J.SCP.2022.100961

Grifoni, M., Rosellini, I., Petruzzelli, G., Pedron, F., Franchi, E. and Barbafieri, M., 2021. Application of sulphate and cytokinin in assisted arsenic phytoextraction by industrial Cannabis sativa L. Environmental Science and Pollution Research, 28(34), pp. 47294–47305. https://doi.org/10.1007/s11356-021-14074-3

Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A. and Aryal, N., 2022. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, pp. 100203. https://doi.org/10.1016/J.ENVADV.2022.100203

Luyckx, M., Blanquet, M., Isenborghs, A., Guerriero, G., Bidar, G., Waterlot, C., Douay, F. and Lutts, S., 2022. Impact of Silicon and Heavy Metals on Hemp (Cannabis sativa L.) Bast Fibres Properties: An Industrial and Agricultural Perspective. International Journal of Environmental Research, 16(82), pp. 1–14. https://doi.org/10.1007/s41742-022-00446-1

Ma?kowski, J., Ko?odziej, J., Pude?ko, K. and Koz?owski, R.M., 2020. Bast fibres: the role of hemp (Cannabis sativa L.) in remediation of degraded lands. In: R.M. Koz?owski, M. Mackiewicz-Talarczyk, eds. Handbook of Natural Fibres: Volume 2: Processing and Applications. London: Woodhead Publishing. pp. 393–417. https://doi.org/10.1016/B978-0-12-818782-1.00011-0

Mendarte-Alquisira, C., Alarcón, A., Ferrera-Cerrato, R. and Mendarte-Alquisira, C., 2021. Fitorremediación: alternativa biotecnológica para recuperar suelos contaminados con DDT. Una revisión. TIP. Revista Especializada en Ciencias Químico-Biológicas, 24, pp. 1-15. https://doi.org/10.22201/FESZ.23958723E.2021.326

Moscariello, C., Matassa, S., Esposito, G. and Papirio, S., 2021. From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resources, Conservation and Recycling, 175, pp. 105864. https://doi.org/10.1016/J.RESCONREC.2021.105864

Mwelwa, S., Chungu, D., Tailoka, F., Beesigamukama, D. and Tanga, C.M., 2023. Data to understand the biotransfer of heavy metals along the soil-plant-edible insect-human food chain in Africa. Data in Brief, 49, pp. 109434. https://doi.org/10.1016/J.DIB.2023.109434

Pandey, V.C., Mahajan, P., Saikia, P. and Praveen, A., 2022. Chapter 5 – Sustainability of fiber crop production from polluted land. In: V.C. Pandey, P. Mahajan, P. Saikia, A. Praveen, eds. Fiber Crop-Based Phytoremediation. London: Elsevier. pp. 115–156. https://doi.org/10.1016/B978-0-12-823993-3.00006-1

Picchi, C., Giorgetti, L., Morelli, E., Landi, M., Rosellini, I., Grifoni, M., Franchi, E., Petruzzelli, G. and Barbafieri, M., 2022. Cannabis sativa L. and Brassica juncea L. grown on arsenic-contaminated industrial soil: potentiality and limitation for phytoremediation. Environmental Science and Pollution Research, 29(11), pp. 15983–15998. https://doi.org/10.1007/s11356-021-16673-6

Prieto-Méndez, U. and González-Ramírez, C., Román-Gutiérrez, A., Prieto-García, F., 2009. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems, 10(1), pp. 29–44. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/25

Pude?ko, K., Ko?odziej, J. and Ma?kowski, J., 2021. Restoration of minesoil organic matter by cultivation of fiber hemp (Cannabis sativa L.) on lignite post-mining areas. Industrial Crops and Products, 171, pp. 113921. https://doi.org/10.1016/j.indcrop.2021.113921

Small, E., 2015. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. The Botanical Review, 81(3), pp. 189–294. https://doi.org/10.1007/S12229-015-9157-3

Song, P., Xu, D., Yue, J., Ma, Y., Dong, S. and Feng, J., 2022. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Science of The Total Environment, 838, pp. 156417. https://doi.org/10.1016/j.scitotenv.2022.156417

Sun, S., Fan, X., Feng, Y., Wang, X., Gao, H. and Song, F., 2023. Arbuscular mycorrhizal fungi influence the uptake of cadmium in industrial hemp (Cannabis sativa L.). Chemosphere, 330, pp. 138728. https://doi.org/10.1016/j.chemosphere.2023.138728

Testa, G., Corinzia, S.A., Cosentino, S.L. and Ciaramella, B.R., 2023. Phytoremediation of Cadmium-, Lead-, and Nickel-Polluted Soils by Industrial Hemp. Agronomy, 13(4), 995. https://doi.org/10.3390/agronomy13040995

Ullah, R., Hadi, F., Ahmad, S., Jan, A.U. and Rongliang, Q., 2019. Phytoremediation of Lead and Chromium Contaminated Soil Improves with the Endogenous Phenolics and Proline Production in Parthenium, Cannabis, Euphorbia, and Rumex Species. Water, Air, and Soil Pollution, 230(40), pp. 1-13. https://doi.org/10.1007/s11270-019-4089-x

Vaverková, M.D., Zloch, J., Adamcová, D., Radziemska, M., Vyhnánek, T., Trojan, V., Winkler, J., ?or?evi?, B., Elbl, J. and Brtnický, M., 2019. Landfill Leachate Effects on Germination and Seedling Growth of Hemp Cultivars (Cannabis sativa L.). Waste and Biomass Valorization, 10(2), 369–376. https://doi.org/10.1007/s12649-017-0058-z

Wielgusz, K., Praczyk, M., Irzykowska, L. and ?wierk, D., 2022. Fertilization and soil pH affect seed and biomass yield, plant morphology, and cadmium uptake in hemp (Cannabis sativa L.). Industrial Crops and Products, 175, pp. 114245. https://doi.org/10.1016/j.indcrop.2021.114245

Yan, F., Li, N., Wang, J. And Wu, H., 2023. Ecological footprint model of heavy metal pollution in water environment based on the potential ecological risk index. Journal of Environmental Management, 344, pp. 118708. https://doi.org/10.1016/j.jenvman.2023.118708




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.56937

DOI: http://dx.doi.org/10.56369/tsaes.5693



Copyright (c) 2024 Manuela Cáceres-Cáceres, Juan David Daza-Burgos, Jose David Serna-Morales, Leonardo Alberto Rios-Osorio

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.