FOLIAR NUTRIENT CONCENTRATION AND MICRONUTRIENT UPTAKE IN THREE PINEAPPLE VARIETIES ESTABLISHED AT DIFFERENT PLANTING DENSITIES

Andrés Rebolledo Martínez, Nain Peralta Antonio, Rosa Laura Rebolledo García, Jose Javier Cancela Barrios, Enrique Alberto Becerril Román, David Jaén Contreras, Laureano Rebolledo Martínez, María Enriqueta López Vázquez, Gerardo Montiel Vicencio

Abstract


Background. The amount of micronutrients required by pineapple changes according to different factors, including cultivar and planting density. Knowing the micronutrient requirement in quantity and the appropriate phenological stage will allow the development of an adequate fertilization program. Objectives. (1) to determine the content of Cu, Fe, Mn, and Zn during the development of three pineapple varieties, at three planting densities; (2) to determine the effect of planting densities on the foliar concentration of N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn during the vegetative stage of the plants; (3) to determine the effect of foliar concentrations on the total micronutrient content at harvest. Methodology. The varieties 'Smooth cayenne', 'Champaka' and 'MD-2' were evaluated at densities of 30 000, 45 000, and 60 000 plants ha-1. The experimental design was a randomized block. The treatments were arranged in a split-plot design, with four replications. The Cu, Fe, Mn, and Zn contents were determined in eight samplings, and the concentrations of N, P, K, Ca, Mg, Fe, Mn, Cu, and Zn were measured in the first five samplings. Results. Higher Cu, Fe, Mn, and Zn content per plant was detected at 30,000 plants ha-1, but higher extraction per hectare was observed at 60,000 plants ha-1. Similar Fe, Mn, and Zn contents were detected among varieties. No defined behavior of nutrient concentration was detected in leaf D. In the three varieties, a high Pearson correlation (r ≥ 0.5) was detected between concentrations and total micronutrient content at 3.6, 4.6, 6.3, 8.6, and 10.1 months of age. Conclusions. The amount of Fe, Mn, Cu, and Zn extracted increases as planting density increases, reaching maximum values of 12.7, 6.2, 1.2, and 0.6 kg ha-1. The Fe extraction of the cv. 'MD-2' is 30% lower than that of the 'Smooth cayenne' and 'Champaka'. A high correlation between leaf nutrient concentration and total Fe, Mn, Cu and Zn content was detected only 18% of the time during the flower induction stage (at 10.1 months of age). A high correlation was detected 82% of the time in samples taken between 4 and 9 months after planting. Leaf analysis was found to be most effective for predicting Fe and Zn behavior, but less effective for Mn and Cu behavior in leaf D.

Keywords


Ananas comosus; ‘Champaka’; Copper; Leaf D; Manganese; ‘MD-2’; ‘Smooth cayenne’; Zinc.

Full Text:

PDF

References


Bradfield, E.G. and Spincer, D., 1965. Leaf analysis as a guide to the nutrition of fruit crops. VI—Determination of magnesium, zinc and copper by atomic absorption spectroscopy. Journal of the Science of Food and Agriculture, 16(1), pp.33–38. https://doi.org/10.1002/jsfa.2740160105

Bremner, J.M., 1965. Total Nitrogen. In: A.G. Norman, ed., Methods of Soil Analysis. John Wiley & Sons, Ltd. pp.1149–1178. https://doi.org/10.2134/agronmonogr9.2.c32

Cardoso, M.M., Pegoraro, R.F., Maia, V.M., Kondo, M.K. and Fernandes, L.A., 2013. Crescimento do abacaxizeiro ‘vitória’ irrigado sob diferentes densidades populacionais, fontes e doses de nitrogênio. Revista Brasileira de Fruticultura, 35(3), pp.769–781. https://doi.org/10.1590/S0100-29452013000300014

Chapman, M.M., Pratt, P.F., Vanselow, A.P., Bradford, G.R., Whiting, L.D. and Contin, A., 1973. Métodos de análisis para suelos, plantas y aguas. México: Trillas.

Chopart, J.-L., Debaut-Henoque, L., Marie-Alphonsine, P.-A., Asensio, R. and Soler, A., 2015. Estimating root length density of pineapple (Ananas comosus (L.) Merr.) from root counts on soil profiles in Martinique (French West Indies). Fruits, 70(3), pp.143–151. https://doi.org/10.1051/fruits/2015010

García, E., 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. [online] Universidad Nacional Autónoma de México. Available at: http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1 [Accessed 14 October 2024].

Hanafi, M.M., Selamat, M.M., Husni, M.H.A. and Adzemi, M.A., 2009. Dry matter and nutrient partitioning of selected pineapple cultivars grown on mineral and tropical peat soils. Communications in Soil Science and Plant Analysis, 40(21–22), pp.3263–3280. https://doi.org/10.1080/00103620903335983

Hiroce, R., Carvalho, A.M.D., Bataglia, O.C., Furlani, P.R., Furlani, Â.M.C., Santos, R.R. dos, Açu, E.E. de P. and Gallo, J.R., 1977. Composição mineral de frutos tropicais na colheita. Bragantia, 36(14), pp.155–164. https://doi.org/10.1590/S0006-87051977000100014

Huerta Uscanga, A., Zetina Lezama, R., López Ochoa, M. and Rebolledo Martínez, A., 2019. pH edáfico y desarrollo inicial de piña MD-2 (Ananas comosus Var. comosus) en cambisoles districos tratados con CaCO3 micronizado. In: J. Martínez Herrera and C. Hernández Hernández, eds. Investigaciones Científicas y Agrotecnológicas para la Seguridad Alimentaria. [online] Tab., México. pp.218–227.

Inforzato, R., Giacomelli, E.J. and Rochelle, L.A., 1968. Sistema radicular do abacaxizeiro, aos 4, 8 e 12 meses, plantado no início da" estação sêca, em solo Latosol Vermelho Escuro-Orto. Bragantia, 27(11), pp.135–141. https://doi.org/10.1590/S0006-87051968000100011

Khuong, N.Q., Phung, N.M., Quang, L.T. and Nguyen, P.C., 2024. Yield gap reduction of pineapple (Ananas comosus L.) by site-specific nutrient management. Heliyon, 10(3), p.e25541. https://doi.org/10.1016/j.heliyon.2024.e25541

Maia, V.M., Pegoraro, R.F., Aspiazú, I., Oliveira, F.S. and Nobre, D.A.C., 2020. Chapter 50 - Diagnosis and management of nutrient constraints in pineapple. In: A.K. Srivastava and C. Hu, eds. Fruit Crops: Diagnosis and Management of Nutrient Constraints. [online] Elsevier. pp.739–760. https://doi.org/10.1016/B978-0-12-818732-6.00050-2

Neri, J.C., Meléndez Mori, J.B., Vilca Valqui, N.C., Huaman Huaman, E., Collazos Silva, R. and Oliva, M., 2021. Effect of Planting Density on the Agronomic Performance and Fruit Quality of Three Pineapple Cultivars (Ananas comosus L. Merr.). International Journal of Agronomy, 2021, p.5559564. https://doi.org/10.1155/2021/5559564

Paula, M.B., Carvalho, J.G. de, Nogueira, F.D. and Silva, Cc.R. de R.. R.R., 1985. Exigências nutricionais do abacaxizeiro. Informe Agropecuário, 11(130), pp.27–31.

Py, C., Lacoeuilhe, J.-J. and Teisson, C., 1987. The pineapple: cultivation and uses. [online] Paris : G.P. Maisonneuve & Larose. Available at: http://hdl.handle.net/10524/55419 [Accessed 14 October 2024].

Queiroga, V. de P., Gomes, J.P., Figueirêdo, R.M.F. de, Melo, B.A. de, Mendes, N.V.B., Lima, D. de C. and Albuquerque, E.M.B. de, 2023. Abacaxizeiro (Ananas comosus L., Merril) tecnologias de plantio e utilização. 1a ed. [online] Campina Grande: AREPB: EMBRAPA. Available at: https://issuu.com/abarriguda/docs/livro_abacaxizeiro_50_pag [Accessed 15 October 2024].

Rebolledo Martínez, A., de Ángel Pérez, A.L., Rebolledo Martínez, L., Becerril Román, A.E. and Uriza Ávila, D., 2006. Rendimiento y calidad de fruto de cultivares de piña en densidades de plantación. Revista Fitotecnia Mexicana, 29(1), pp.55–62. https://doi.org/10.35196/rfm.2006.1.55

Rebolledo Martínez, A., Uriza Ávila, D.E. and Rebolledo Martínez, L., 1998. Tecnología para la producción de piña en México. Folleto técnico Núm. 20. Campo Experimental Papaloapan, Veracruz, Méx.: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias.

Rebolledo Martínez, A., Uriza-Ávila, D.E., Del Angel Pérez, A.L., Rebolledo Martínez, L. and Zetina Lezama, R., 2016. La piña y su cultivo en México: Cayena Lisa y MD2. Libro Técnico N° 38. Medellín de Bravo, Ver.: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias.

Rebolledo-Martínez, A., Peralta-Antonio, N., Rebolledo-García, R.L., Becerril-Román, A.E., Rebolledo-Martínez, L., Jaén-Contreras, D., Uriza-Ávila, D.E., Inurreta-Aguirre, H.D. and Montiel-Vicencio, G., 2023. Nitrogen, phosphorus and potassium content in different organs of pineapple cultivars at different planting density. Tropical and Subtropical Agroecosystems, 26(3), p.#81. https://doi.org/10.56369/tsaes.4539

Sampaio, A.C., Fumis, T. de F. and Leonel, S., 2011. Crescimento vegetativo e características dos frutos de cinco cultivares de abacaxi na região de Bauru-SP. Revista Brasileira de Fruticultura, 33(3), pp.816–822. https://doi.org/10.1590/S0100-29452011005000101

Shahbandeh, M., 2024. Pineapple production worldwide from 2002 to 2022. [online] Statista. Available at: https://www.statista.com/statistics/298505/global-pineapple-production/ [Accessed 30 May 2024].

SIAP, (Servicio de Información Agroalimentaria y Pesquera), 2023. Anuario Estadístico de la Producción Agrícola. [online] Available at: https://nube.siap.gob.mx/cierreagricola/ [Accessed 2 February 2024].

Silva, A.P. da, Alvarez V, V.H., Souza, A.P. de, Neves, J.C.L., Novais, R.F. and Dantas, J.P., 2009. Sistema de recomendação de fertilizantes e corretivos para a cultura do abacaxi - fertcalc-abacaxi. Revista Brasileira de Ciência do Solo, 33, pp.1269–1280. https://doi.org/10.1590/S0100-06832009000500020

Soler, A., 1990. Advantages and limits to the use of 3 CPA (2-3 clorophenoxi-propionic acid) in pineapple in Ivory Coast. Fruits, 45(4), pp.357–365.

Souza, L.F. da S., 2000. 10 Adubação. In: D.H. Reinhardt, L.F. da S. Souza and J.R.S. Cabral, eds. Abacaxi produção Aspectos Técnicos. [online] Brasília – DF: Embrapa Comunicação para Transferência de Tecnologia. pp.30–34. Available at: https://www.frutvasf.org/wp-content/uploads/2022/06/abacaxi.pdf

Souza, R.P.D., Pegoraro, R.F., Reis, S.T., Maia, V.M. and Sampaio, R.A., 2019. Partition and macronutrients accumulation in pineapple under nitrogen doses and plant density. Comunicata Scientiae, 10(3), pp.384–395. https://doi.org/10.14295/cs.v10i3.2604

Thapa, S., Bhandari, A., Ghimire, R., Xue, Q., Kidwaro, F., Ghatrehsamani, S., Maharjan, B. and Goodwin, M., 2021. Managing micronutrients for improving soil fertility, health, and soybean yield. Sustainability, 13(21), p.11766. https://doi.org/10.3390/su132111766

Trejo, D., Bañuelos, J., Gavito, M.E. and Sangabriel-Conde, W., 2020. High phosphorus fertilization reduces mycorrhizal colonization and plant biomass of three cultivars of pineapple. Terra Latinoamericana, 38(4), pp.853–858. https://doi.org/10.28940/terra.v38i4.701

Uriza?Ávila, D.E., Torres?Ávila, A., Aguilar?Ávila, J., Santoyo?Cortés, V.H. and Rebolledo-Martínez, A., 2018. La piña mexicana frente al reto de la innovación. Avances y retos en la gestión de la innovación. In: Colección Trópico Húmedo, Chapingo. [online] Estado de México. México: UACh. p.484. Available at: http://ciestaam.edu.mx/publicaciones2018/libros/pinia-mexicana-frente-al-reto-de-la-innovacion.pdf

Valleser, V.C., 2019. Phosphorus nutrition provoked improvement on the growth and yield of ‘MD-2’ pineapple. Pertanika Journal of Tropical Agricultural Science, 42(2), pp.467–478.

Vásquez Jiménez, J., 2010. Evaluación de la necesidad de hierro del cultivo de piña Ananas comosus (L) Merr, var MD-2 en tres órdenes de suelo del norte y caribe norte de Costa Rica. Tesis de Maestría. Universidad de Costa Rica.

Vázquez-Jiménez, J. and Bartholomew, D.P., 2018. Plant Nutrition. In: Sanewski, G., Bartholomew, D.P., Paull R.E. (Eds.) The pineapple: botany, production and uses, 2nd ed. Wallingford UK: CAB International. pp.175–202.

Vilela, G.B., Pegoraro, R.F. and Maia, V.M., 2015. Predição de produção do abacaxizeiro ‘Vitória’ por meio de características fitotécnicas e nutricionais. Revista Ciência Agronômica, 46(4), pp.724–732.

Zetina, R.L., Rebolledo, A.M. and Uriza, D.E.A., 2005. Soil characterization of pineapple producing regions of Mexico. Acta Horticulturae, (666), pp.51–58.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.56649

DOI: http://dx.doi.org/10.56369/tsaes.5664



Copyright (c) 2025 Andrés Rebolledo Martínez, Nain Peralta Antonio, Rosa Laura Rebolledo García, Jose Javier Cancela Barrios, Enrique Alberto Becerril Román, David Jaén Contreras, Laureano Rebolledo Martínez, María Enriqueta López Vázquez, Gerardo Montiel Vicencio

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.