PREDICTION OF STILLBORN PIGLETS FROM MULTIPAROUS SOWS

Daniel Alonso Domínguez-Olvera, José Guadalupe Herrera-Haro, José Ricardo Bárcena-Gama, María Esther Ortega-Cerrilla, Francisco Ernesto Martínez-Castañeda, Antonio José Rouco-Yáñez, María Angélica Ortiz-Heredia, Nathaniel Alec Rogers-Montoya

Abstract


Background: Assisting sows during parturition reduces the number of stillborn piglets caused by anoxia. However, in industrial settings with a large number of animals, the capacity for assistance is limited. The development of predictive models based on existing data can enable farms to anticipate stillbirths in sows. Objective: To develop a predictive model to identify factors affecting the presence of stillborn piglets (PSbP), estimate the probability of their occurrence, and establish a classification criterion accordingly. Methodology: Data from 2 415 farrowings in 822 sows (Landrace, Yorkshire, and their crossbreeds) were analyzed. Five variables relating to the current farrowing and five variables related to the preceding one were examined. Our study used cross-validation (groups = 5), modeling the response variable (PSbP, 1: presence, 0: absence). Results: The only factor shown to have a negative effect (p<0.01) on PSbP was litter weight at birth, while litter size at birth and parity (number of farrowings) were seen to have a positive effect (p<0.01). PSbP prevalence during training and testing were 0.297 and 0.296 respectively. The model's estimated probability levels were 0.311 during training and 0.303 during testing, indicating an accurate probability estimation. When categorizing using the optimal cutoff point of 0.395, the predictive efficiency as measured by the area under the Receiver Operating Characteristic (ROC) curve was 0.846 for training and 0.813 for testing. Implications: Implementing this model of information-management software could make it possible to provide swift, efficient technical assistance to sows in need, with a high level of predictive efficiency. Conclusions: The probabilistic model described here based on a Bayesian approach and adjusted based on a categorization criterion showed effective predictive efficiency in the prediction of stillborn piglets. 

Keywords


probabilistic model; logistic regression; cross-validation; Sus scrofa domesticus.

Full Text:

PDF

References


Alonso-Spilsbury, M., Ramirez-Necoechea, R., Gonzalez-Lozano, M., Mota-Rojas, D. and Trujillo-Ortega, M.E., 2007. Piglet survival in early lactation: a review. Journal of Animal and Veterinary Advances, 6(1), pp. 76-86. http://docsdrive.com/pdfs/medwelljournals/javaa/2007/76-86.pdf [Accessed 21 March, 2024].

Bates, S., Hastie, T. and Tibshirani, R., 2023. Cross-validation: what does it estimate and how well does it do it? Journal of the American Statistical Association, pp. 1-12. https://doi.org/10.1080/01621459.2023.2197686

Baxter, E.M., Jarvis, S., D’eath, R.B., Ross, D.W., Robson, S.K., Farish, M., Nevison, I.M., Lawrence A.B. and Edwards, S.A., 2008. Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology, 69 (6), pp. 773-783. https://doi.org/10.1016/j.theriogenology.2007.12.007

Berrar, D., 2017. Confidence curves: an alternative to null hypothesis significance testing for the comparison of classifiers. Mach Learn. 106, pp. 911–949. https://doi.org/10.1007/s10994-016-5612-6

Caicedo, Q.W., Valle, R.S. and Velázquez, R.F., 2012. Diagnóstico participativo para la producción porcina en el medio periurbano y rural del cantón Pastaza Ecuador. Revista Electrónica de Veterinaria, 13(8), pp. 1-9. Available at: https://www.redalyc.org/pdf/636/63624429006.pdf [Accessed 21 March, 2024].

Canario, L., Pere, M.C., Tribout, T., Thomas, F., David, C., Gogué, J. and Le Dividich, J., 2007. Estimation of genetic trends from 1977 to 1998 of body composition and physiological state of Large White pigs at birth. Animal, 1(10), pp. 1409-1413. https://doi.org/10.1017/S1751731107000766

Carrión-López, M.J., Orengo, J., Madrid, J., Vargas, A., and Martínez-Miró, S., 2022. Effect of sow body weight at first service on body status and performance during first parity and lifetime. Animals, 12(23), p. 3399. https://doi.org/10.3390/ani12233399

Castillo, M.T. and Vicente, S.C., 2016. Puntos clave en el manejo en maternidad. Anaporc: Revista de la Asociación de Porcinocultura Científica, 13(134), pp. 22-28. Available at: https://www.archivo-anaporc.com/app/download/6467914011/Puntos+clave+en+el+manejo+de+madres.pdf?t=1494408309 [Accessed 21 march 2024].

Faccin, J.E., Laskoski, F., Hernig, L.F., Kummer, R., Lima, G.F., Orlando, U.A. and Bortolozzo, F.P., 2020. Impact of increasing weaning age on pig performance and belly nosing prevalence in a commercial multisite production system. Journal of Animal Science, 98(4), skaa031. https://doi.org/10.1093/jas/skaa031

FAO, 2022. FAOSTAT-Cultivos y productos de ganadería. Available at: https://www.fao.org/faostat/es/#data/QCL [Accessed 02 march 2023].

Gaillard, C., Brossard, L. and Dourmad, J.Y., 2020. Improvement of feed and nutrient efficiency in pig production through precision feeding. Animal Feed Science and Technology, pp. 268. https://doi.org/10.1016/j.anifeedsci.2020.114611

Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y.S., 2008. A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2(4), pp. 1360-1383. https://doi.org/10.1214/08-AOAS191

Ghio, M. and De la Sota, M.N.L., 2015. Actualización sobre mejoramiento genético porcino en el mundo y en la República Argentina. Semiárida, 25(2), pp. 72-73. Available at: https://ojs24.unlpam.edu.ar/index.php/semiarida/article/view/2543 [Accessed 21 march 2024].

Knol, E.F., Leenhouwers, J.I. and Van der Lende, T., 2002. Genetic aspects of piglet survival. Livestock Production Science, 78(1), pp. 47-55. https://doi.org/10.1016/S0301-6226(02)00184-7

Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. American Association for Artificial Intelligence, 2(12), pp. 1137-1143. Available at: https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf [Accessed 21 march 2024]

Leenhouwers, J.I., Van Der Lende, T. and Knol, E.F., 1999. Analysis of stillbirth in different lines of pig. Livestock Production Science, 57(3), pp. 243-253. https://doi.org/10.1016/S0301-6226(98)00171-7

Londoño-Parra, J.S., Cabrera-Torres, K.R. and González-Hurtado, M.I., 2018. Modelo de predicción probabilística de deterioro en jamón de cerdo cocido. Vitae, 25(2), pp. 64-74. https://doi.org/10.17533/udea.vitae.v25n2a02

Lynam, A.L., Dennis, J.M., Owen, K.R., Oram, R.A., Jones, A.G., Shields, B.M. and Ferrat, L.A., 2020. Logistic regression has similar performance to optimized machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults. Diagnostic and Prognostic Research, 4(1), pp. 1-10. https://doi.org/10.1186/s41512-020-00075-2

Maes, D.G., Dewulf, J., Piñeiro, C., Edwards, S. and Kyriazakis, I., 2020. A critical reflection on intensive pork production with an emphasis on animal health and welfare. Journal of Animal Science, Volume 98, Issue Supplement 1, pp. S15–S26.

Martínez-Castañeda, F.E. and Perea-Peña, M., 2012. Estrategias locales y de gestión para la porcicultura doméstica en localidades periurbanas del Valle de México. Agricultura, Sociedad y Desarrollo, 9(4), pp. 411-425. Available at: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-54722012000400003&lng=es&tlng=es [Accessed 21 march, 2022].

Molinaro, A.M., Simon, R. and Pfeiffer, R.M., 2005. Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21(15), pp. 3301-3307. https://doi.org/10.1093/bioinformatics/bti499

Nahm, F.S., 2022. Receiver operating characteristic curve: overview and practical use for clinicians. Korean Journal of Anesthesiology, 75(1), pp. 25-36. https://doi.org/10.4097/kja.21209

Nusinovici, S., Tham, Y.C., Yan, M.Y.C., Ting, D.S.W., Li, J., Sabanayagam, C., Wong T.Y. and Cheng, C.Y., 2020. Logistic regression was as good as machine learning for predicting major chronic diseases. Journal of Clinical Epidemiology, 122, pp. 56-69. https://doi.org/10.1016/j.jclinepi.2020.03.002

Oliviero, C., Heinonen, M., Valros, A. and Peltoniemi, O., 2010. Environmental and sow-related factors affecting the duration of farrowing. Animal Reproduction Science, 119(1-2), pp. 85-91. https://doi.org/10.1016/j.anireprosci.2009.12.009

Patterson, J., Bernardi, M.L., Allerson, M., Hanson, A., Holden, N., Bruner, L., Pinilla, J.C., and Foxcroft, G., 2020. Associations among individual gilt birth weight, litter birth weight phenotype, and the efficiency of replacement gilt production. Journal of Animal Science, 98(11), p. skaa331. https://doi.org/10.1093/jas/skaa331

Pérez Planells, L., Delegido Gómez, J., Rivera-Caicedo, J.P. and Verrelst, J., 2015. Análisis de métodos de validación cruzada para la obtención robusta de parámetros biofísicos. Revista Española de Teledetección, 44, pp. 55-65. http://dx.doi.org/10.4995/raet.2015.4153

Pinto, E.V. and Sánchez-Bayle, M., 2017. Creación de un modelo probabilístico de diagnóstico de infección bacteriana grave en lactantes febriles de 0 a 3 meses de vida. Anales de Pediatría, 87(6), pp. 330-336. https://doi.org/10.1016/j.anpedi.2017.02.003

Polo, T.C.F. and Miot, H.A., 2020. Aplicações da curva ROC em estudos clínicos e experimentais. Jornal Vascular Brasileiro, pp. 19. https://doi.org/10.1590/1677-5449.200186

Pomar, J. and López, V., 2018. La porcicultura de precisión es una perspectiva innovadora para el futuro de la producción porcina (I). Albéitar: Publicación Veterinaria Independiente, (217), pp. 18-19. Available at: https://core.ac.uk/download/pdf/161804819.pdf [Accessed 21 march, 2024].

Pomar, J. and Pomar, C., 2005. A knowledge-based decision support system to improve sow farm productivity. Expert Systems with Applications, 29(1), pp. 33-40. https://doi.org/10.1016/j.eswa.2005.01.002

R Core Team., 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

Rendón del Águila, J.U., Martínez-Gamba, R.G., Herradora Lozano, M.A. and Alonso-Spilsbury, M., 2017. Efecto del peso al nacer, tamaño de camada y posición en la ubre sobre el crecimiento de cerdos durante la lactancia y engorda. Revista Mexicana de Ciencias Pecuarias, 8(1), pp. 75-81. https://doi.org/10.22319/rmcp.v8i1.4317

Salazar, S., 2018. Factores que afectan la vitalidad de los lechones al momento del nacimiento. Nutrición Animal Tropical, 12(1), pp. 40-58. https://doi.org/10.15517/nat.v12i1.33670

Schober, P. and Vetter, T.R., 2021. Logistic regression in medical research. Anesthesia and Analgesia, 132(2), pp. 365. https://doi.org/10.1213/ane.0000000000005247

Stalder, K.J., 2017. Pork industry productivity analysis. National Pork Board Report. Available at: https://jygatech.com/wp-content/uploads/2021/05/PigmortalityStalderIowa.pdf [Accessed 21 march 2024].

Tzanidakis, C., Simitzis, P., Arvanitis, K. and Panagakis, P., 2021. An overview of the current trends in precision pig farming technologies. Livestock Science, pp. 249, 104530. https://doi.org/10.1016/j.livsci.2021.104530

van den Bosch, M., van de Linde, I.B., Kemp, B., and van den Brand, H., 2022. Disentangling litter size and farrowing duration effects on piglet stillbirth, acid–base blood parameters, and pre-weaning mortality. Frontiers in Veterinary Science, 9, p. 836202. https://doi.org/10.3389/fvets.2022.836202.

Vanderhaeghe, C., Dewulf, J., de Kruif, A. and Maes, D., 2013. Non-infectious factors associated with stillbirth in pigs: a review. Animal Reproduction Science, 139(1-4), pp. 76-88. https://doi.org/10.1016/j.anireprosci.2013.03.007

Vanderhaeghe, C., Dewulf, J., De Vliegher, S., Papadopoulos, G.A., de Kruif, A. and Maes, D., 2010. Longitudinal field study to assess sow level risk factors associated with stillborn piglets. Animal Reproduction Science, 120(1-4), pp. 78-83. https://doi.org/10.1016/j.anireprosci.2010.02.010




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.56582

DOI: http://dx.doi.org/10.56369/tsaes.5658



Copyright (c) 2025 Daniel Alonso Domínguez-Olvera, José Guadalupe Herrera-Haro, José Ricardo Bárcena-Gama, María Esther Ortega-Cerrilla, Francisco Ernesto Martínez-Castañeda, Antonio José Rouco-Yáñez, María Angélica Ortiz-Heredia, Nathaniel Alec Rogers-Montoya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.