PREDICTION OF STILLBORN PIGLETS FROM MULTIPAROUS SOWS
Abstract
Keywords
Full Text:
PDFReferences
Alonso-Spilsbury, M., Ramirez-Necoechea, R., Gonzalez-Lozano, M., Mota-Rojas, D. and Trujillo-Ortega, M.E., 2007. Piglet survival in early lactation: a review. Journal of Animal and Veterinary Advances, 6(1), pp. 76-86. http://docsdrive.com/pdfs/medwelljournals/javaa/2007/76-86.pdf [Accessed 21 March, 2024].
Bates, S., Hastie, T. and Tibshirani, R., 2023. Cross-validation: what does it estimate and how well does it do it? Journal of the American Statistical Association, pp. 1-12. https://doi.org/10.1080/01621459.2023.2197686
Baxter, E.M., Jarvis, S., D’eath, R.B., Ross, D.W., Robson, S.K., Farish, M., Nevison, I.M., Lawrence A.B. and Edwards, S.A., 2008. Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology, 69 (6), pp. 773-783. https://doi.org/10.1016/j.theriogenology.2007.12.007
Berrar, D., 2017. Confidence curves: an alternative to null hypothesis significance testing for the comparison of classifiers. Mach Learn. 106, pp. 911–949. https://doi.org/10.1007/s10994-016-5612-6
Caicedo, Q.W., Valle, R.S. and Velázquez, R.F., 2012. Diagnóstico participativo para la producción porcina en el medio periurbano y rural del cantón Pastaza Ecuador. Revista Electrónica de Veterinaria, 13(8), pp. 1-9. Available at: https://www.redalyc.org/pdf/636/63624429006.pdf [Accessed 21 March, 2024].
Canario, L., Pere, M.C., Tribout, T., Thomas, F., David, C., Gogué, J. and Le Dividich, J., 2007. Estimation of genetic trends from 1977 to 1998 of body composition and physiological state of Large White pigs at birth. Animal, 1(10), pp. 1409-1413. https://doi.org/10.1017/S1751731107000766
Carrión-López, M.J., Orengo, J., Madrid, J., Vargas, A., and Martínez-Miró, S., 2022. Effect of sow body weight at first service on body status and performance during first parity and lifetime. Animals, 12(23), p. 3399. https://doi.org/10.3390/ani12233399
Castillo, M.T. and Vicente, S.C., 2016. Puntos clave en el manejo en maternidad. Anaporc: Revista de la Asociación de Porcinocultura Científica, 13(134), pp. 22-28. Available at: https://www.archivo-anaporc.com/app/download/6467914011/Puntos+clave+en+el+manejo+de+madres.pdf?t=1494408309 [Accessed 21 march 2024].
Faccin, J.E., Laskoski, F., Hernig, L.F., Kummer, R., Lima, G.F., Orlando, U.A. and Bortolozzo, F.P., 2020. Impact of increasing weaning age on pig performance and belly nosing prevalence in a commercial multisite production system. Journal of Animal Science, 98(4), skaa031. https://doi.org/10.1093/jas/skaa031
FAO, 2022. FAOSTAT-Cultivos y productos de ganadería. Available at: https://www.fao.org/faostat/es/#data/QCL [Accessed 02 march 2023].
Gaillard, C., Brossard, L. and Dourmad, J.Y., 2020. Improvement of feed and nutrient efficiency in pig production through precision feeding. Animal Feed Science and Technology, pp. 268. https://doi.org/10.1016/j.anifeedsci.2020.114611
Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y.S., 2008. A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2(4), pp. 1360-1383. https://doi.org/10.1214/08-AOAS191
Ghio, M. and De la Sota, M.N.L., 2015. Actualización sobre mejoramiento genético porcino en el mundo y en la República Argentina. Semiárida, 25(2), pp. 72-73. Available at: https://ojs24.unlpam.edu.ar/index.php/semiarida/article/view/2543 [Accessed 21 march 2024].
Knol, E.F., Leenhouwers, J.I. and Van der Lende, T., 2002. Genetic aspects of piglet survival. Livestock Production Science, 78(1), pp. 47-55. https://doi.org/10.1016/S0301-6226(02)00184-7
Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. American Association for Artificial Intelligence, 2(12), pp. 1137-1143. Available at: https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf [Accessed 21 march 2024]
Leenhouwers, J.I., Van Der Lende, T. and Knol, E.F., 1999. Analysis of stillbirth in different lines of pig. Livestock Production Science, 57(3), pp. 243-253. https://doi.org/10.1016/S0301-6226(98)00171-7
Londoño-Parra, J.S., Cabrera-Torres, K.R. and González-Hurtado, M.I., 2018. Modelo de predicción probabilística de deterioro en jamón de cerdo cocido. Vitae, 25(2), pp. 64-74. https://doi.org/10.17533/udea.vitae.v25n2a02
Lynam, A.L., Dennis, J.M., Owen, K.R., Oram, R.A., Jones, A.G., Shields, B.M. and Ferrat, L.A., 2020. Logistic regression has similar performance to optimized machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults. Diagnostic and Prognostic Research, 4(1), pp. 1-10. https://doi.org/10.1186/s41512-020-00075-2
Maes, D.G., Dewulf, J., Piñeiro, C., Edwards, S. and Kyriazakis, I., 2020. A critical reflection on intensive pork production with an emphasis on animal health and welfare. Journal of Animal Science, Volume 98, Issue Supplement 1, pp. S15–S26.
Martínez-Castañeda, F.E. and Perea-Peña, M., 2012. Estrategias locales y de gestión para la porcicultura doméstica en localidades periurbanas del Valle de México. Agricultura, Sociedad y Desarrollo, 9(4), pp. 411-425. Available at: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-54722012000400003&lng=es&tlng=es [Accessed 21 march, 2022].
Molinaro, A.M., Simon, R. and Pfeiffer, R.M., 2005. Prediction error estimation: a comparison of resampling methods. Bioinformatics, 21(15), pp. 3301-3307. https://doi.org/10.1093/bioinformatics/bti499
Nahm, F.S., 2022. Receiver operating characteristic curve: overview and practical use for clinicians. Korean Journal of Anesthesiology, 75(1), pp. 25-36. https://doi.org/10.4097/kja.21209
Nusinovici, S., Tham, Y.C., Yan, M.Y.C., Ting, D.S.W., Li, J., Sabanayagam, C., Wong T.Y. and Cheng, C.Y., 2020. Logistic regression was as good as machine learning for predicting major chronic diseases. Journal of Clinical Epidemiology, 122, pp. 56-69. https://doi.org/10.1016/j.jclinepi.2020.03.002
Oliviero, C., Heinonen, M., Valros, A. and Peltoniemi, O., 2010. Environmental and sow-related factors affecting the duration of farrowing. Animal Reproduction Science, 119(1-2), pp. 85-91. https://doi.org/10.1016/j.anireprosci.2009.12.009
Patterson, J., Bernardi, M.L., Allerson, M., Hanson, A., Holden, N., Bruner, L., Pinilla, J.C., and Foxcroft, G., 2020. Associations among individual gilt birth weight, litter birth weight phenotype, and the efficiency of replacement gilt production. Journal of Animal Science, 98(11), p. skaa331. https://doi.org/10.1093/jas/skaa331
Pérez Planells, L., Delegido Gómez, J., Rivera-Caicedo, J.P. and Verrelst, J., 2015. Análisis de métodos de validación cruzada para la obtención robusta de parámetros biofísicos. Revista Española de Teledetección, 44, pp. 55-65. http://dx.doi.org/10.4995/raet.2015.4153
Pinto, E.V. and Sánchez-Bayle, M., 2017. Creación de un modelo probabilístico de diagnóstico de infección bacteriana grave en lactantes febriles de 0 a 3 meses de vida. Anales de Pediatría, 87(6), pp. 330-336. https://doi.org/10.1016/j.anpedi.2017.02.003
Polo, T.C.F. and Miot, H.A., 2020. Aplicações da curva ROC em estudos clínicos e experimentais. Jornal Vascular Brasileiro, pp. 19. https://doi.org/10.1590/1677-5449.200186
Pomar, J. and López, V., 2018. La porcicultura de precisión es una perspectiva innovadora para el futuro de la producción porcina (I). Albéitar: Publicación Veterinaria Independiente, (217), pp. 18-19. Available at: https://core.ac.uk/download/pdf/161804819.pdf [Accessed 21 march, 2024].
Pomar, J. and Pomar, C., 2005. A knowledge-based decision support system to improve sow farm productivity. Expert Systems with Applications, 29(1), pp. 33-40. https://doi.org/10.1016/j.eswa.2005.01.002
R Core Team., 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/
Rendón del Águila, J.U., Martínez-Gamba, R.G., Herradora Lozano, M.A. and Alonso-Spilsbury, M., 2017. Efecto del peso al nacer, tamaño de camada y posición en la ubre sobre el crecimiento de cerdos durante la lactancia y engorda. Revista Mexicana de Ciencias Pecuarias, 8(1), pp. 75-81. https://doi.org/10.22319/rmcp.v8i1.4317
Salazar, S., 2018. Factores que afectan la vitalidad de los lechones al momento del nacimiento. Nutrición Animal Tropical, 12(1), pp. 40-58. https://doi.org/10.15517/nat.v12i1.33670
Schober, P. and Vetter, T.R., 2021. Logistic regression in medical research. Anesthesia and Analgesia, 132(2), pp. 365. https://doi.org/10.1213/ane.0000000000005247
Stalder, K.J., 2017. Pork industry productivity analysis. National Pork Board Report. Available at: https://jygatech.com/wp-content/uploads/2021/05/PigmortalityStalderIowa.pdf [Accessed 21 march 2024].
Tzanidakis, C., Simitzis, P., Arvanitis, K. and Panagakis, P., 2021. An overview of the current trends in precision pig farming technologies. Livestock Science, pp. 249, 104530. https://doi.org/10.1016/j.livsci.2021.104530
van den Bosch, M., van de Linde, I.B., Kemp, B., and van den Brand, H., 2022. Disentangling litter size and farrowing duration effects on piglet stillbirth, acid–base blood parameters, and pre-weaning mortality. Frontiers in Veterinary Science, 9, p. 836202. https://doi.org/10.3389/fvets.2022.836202.
Vanderhaeghe, C., Dewulf, J., de Kruif, A. and Maes, D., 2013. Non-infectious factors associated with stillbirth in pigs: a review. Animal Reproduction Science, 139(1-4), pp. 76-88. https://doi.org/10.1016/j.anireprosci.2013.03.007
Vanderhaeghe, C., Dewulf, J., De Vliegher, S., Papadopoulos, G.A., de Kruif, A. and Maes, D., 2010. Longitudinal field study to assess sow level risk factors associated with stillborn piglets. Animal Reproduction Science, 120(1-4), pp. 78-83. https://doi.org/10.1016/j.anireprosci.2010.02.010
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.56582
DOI: http://dx.doi.org/10.56369/tsaes.5658
Copyright (c) 2025 Daniel Alonso Domínguez-Olvera, José Guadalupe Herrera-Haro, José Ricardo Bárcena-Gama, María Esther Ortega-Cerrilla, Francisco Ernesto Martínez-Castañeda, Antonio José Rouco-Yáñez, María Angélica Ortiz-Heredia, Nathaniel Alec Rogers-Montoya

This work is licensed under a Creative Commons Attribution 4.0 International License.