SHEEP FOOD SUPPLEMENT OBTAINED BY SOLID STATE FERMENTATION (SSF) BASED ON SUGAR CANE POST-HARVEST WASTE

Laura Milena Gómez Martínez, Alejandra Rodriguez Montaña, José Jobanny Martínez, Leidy Yanira Rache Cardenal, Luis Miguel Borrás Sandoval

Abstract


Background: The growing demand for foods such as corn or soy has favored the study and implementation of biotechnologies that use agroindustrial waste and transform them so that they can be used to obtain alternative diets for animals with a high biological value. Objective: To increase the feed value of sugarcane bagasse through fermentation with probiotic microorganisms under solid-state conditions. Methodology: A diet based on by-products of sugarcane bagasse harvest treated by solid-state fermentation (SSF) was prepared. The fibrous material was collected, dried, ground, and mixed in a proportion of 1.0 and 2.0 inclusion with alfalfa flour (1.5), molasses (0.25), sodium sulfate (0.05), calcium carbonate (0.05), mineralized salt (0.05), urea (0.15), microbial preparation (0.25), and potato (6.7 or 5.7, respectively). The prepared feed was subjected to FES and evaluated by compositional and microbiological analysis. The effect of the percentage of sugarcane bagasse inclusion on obtaining dry matter, humidity, ash, ethereal extracts, crude protein, neutral and acid detergent fiber, organic matter and in situ digestibility of dry matter was analyzed. Results: The inclusion percentage significantly affects the production of ash (7.23 and 6.63%, respectively), crude protein (16.3 and 14.1%, respectively), organic matter (92.7 and 93.3%, respectively), and in situ digestibility (74.6 and 63.8, respectively). The microbiological analysis determined that the count of lactic acid bacteria and aerobic mesophiles increased with fermentation time; no growth of molds, yeasts, or Salmonella was observed. Implications: Solid-state fermentation proves its value as a sustainable strategy, a cost-effective alternative, and an easily applicable approach for the utilization and valorization of agroindustrial waste by incorporating it into functional diets for sheep. Conclusion: Under the conditions of this study, it was demonstrated that the biological value of sugarcane bagasse can be effectively increased through solid- state fermentation when combined with other raw materials, making it a viable component in formulating diets for sheep.     

Keywords


Agroindustrial waste; bagasse; processing; Lactobacillus; animal nutrition

Full Text:

PDF

References


Aguilar-Pardo, A., Hernández-Pérez, J.A. and Aguilar-Estrada, D., 2016. Nuevos paradigmas en la cosecha de la caña para el uso sustentable de toda la biomasa en las bioeléctricas. Parte I. ICIDCA. Sobre los derivados de la caña de azúcar, 50, pp.3-8. https://www.redalyc.org/articulo.oa?id=223152661001

Ahmed, M., Babiker, S.A., Fadel, A.E.M.A. and Mohammed, A.M., 2013. Effect of Urea treatment on nutritive value of sugarcane bagasse. ARPN Journal of Science and Technology, 3, pp. 839-843

Alokika, A., Kumar, A., Kumar, V. and Singh, B., 2021. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, pp. 564-582. http://doi.org/10.1016/j.ijbiomac.2020.12.175

Álvarez, A., Rodríguez, A., Chaparro, S., Borrás, L.M., Rache, L.Y., Brijaldo, M.H. and Martínez, J.J., 2025. Solid-state fermentation as a biotechnological tool to reduce antinutrients and increase nutritional content in legumes and cereals for animal feed. Fermentation, 11, pp. 1-23. http://doi.org/10.3390/fermentation11070359

Alves, A.R., Pascoal, L.A.F., Cambuí, G.B., Trajano, J. da S., Silva, C.M. and Gois, G.C., 2016. Fibra para ruminantes: Aspecto nutricional, metodológico e funcional. Publicações em Medicina Veterinária e Zootecnia, 10, pp. 513–579. http://doi.org/10.22256/PUBVET.V10N7.568-579

AOAC, 2005. Official Methods of Analysis. Método de referencia AOAC 966.23. 17th. Edition, Virginia: Assoc. Off, Agric. Anal. Chem. Arlington.

Astashkina, A., Khudyakova, L. and Kolbysheva, Y.V., 2014. Microbiological quality control of probiotics products. Procedia Chemistry, 10, pp. 74-79. http://doi.org/10.1016/j.proche.2014.10.014

Attaelmnan, B. and Ismeal, R., 2019. In vitro digestibility and in situ degradability of sugarcane bagasse treated with urea as energy source in total mixed ration for goat. Online Journal of Animal and Feed Research, 9, pp. 86-91. https://ojafr.com/main/index.php?option=com_content&view=article&id=139:volume-9-issue-2-march-2019&catid=36:published&Itemid=149

Barona, A.F., Antolinez, E.Y., López, J.G., Viveros, C.A., Jiménez, J., Ángel, J.C., Ballesteros, A.L. and Vargas, G.A., 2021. Comportamiento agroindustrial de seis variedades de Caña de azúcar (Saccharum spp.) para panela en Barbosa (Colombia). Revista Ciencia y Agricultura, 18, pp. 15-28. http://doi.org/10.19053/01228420.v18.n3.2021.12856

Barrios-González, J., 2012. Solid-state fermentation: Physiology of solid medium, its molecular basis and applications. Process Biochemistry, 47, pp. 175-185. http://doi.org/10.1016/j.procbio.2011.11.016

Bird, P., Flannery, J., Crowley, E., Agin, J., Goins, D. and Jechorek, R., 2015. Evaluation of the 3M™ Petrifilm™ rapid yeast and mold count plate for the enumeration of yeast and mold in food: Collaborative study, first action 2014.05. Journal of AOAC International, 98, pp. 767-783. http://doi.org/10.5740/jaoacint.15-006

Blagoeva, G., Milev, M., Minkova, S., Gotcheva, V. and Angelov, A., 2014. Assessment of lactic acid bacteria and Enterobacteriaceae counts in Bulgarian probiotic products by TEMPO® System and ISO Methods. Journal of Nutritional Health & Food Engineering, 1, pp. 1-5. http://doi.org/10.15406/jnhfe.2014.01.00029

Borrás, L.M., Valiño, E.C., Elías, A., Martínez, J.J., Sanabria, A.M. and Becerra, M.L., 2021. Effect of fibrous materials inclusion on the solid-state fermentation of post harvested wastes of Solanum tuberosum, inoculated with a microbial preparation. Cuban Journal of Agricultural Science, 5, pp. 31-42. https://cjascience.com/index.php/CJAS/article/view/995/1284

Borrás-Sandoval, L.M., Valiño-Cabrera, E.C. and Rodríguez-Molano, C.E., 2017. Preparado microbiano con actividad ácido láctica como acelerante biológico en los procesos de fermentación para alimento animal. Ciencia y Agricultura, 14, pp. 7-13. http://doi.org/10.19053/01228420.v14.n1.2017.6083

Buxton, D.R. and Redfearn, D.D., 1997. Plant limitations to fiber digestion and utilization. The Journal of Nutrition, 127, pp. 814S-818S. http://doi.org/10.1093/jn/127.5.814S

Caicedo, W., Alvez, F.N., Viáfara, D., Guamán, A., Sócola, C., Perez, M., Díaz, L. and Motta, W., 2019. Evaluación química y digestibilidad fecal de cerdos en crecimiento alimentados con banano orito (Musa acuminata AA) fermentado en estado sólido. Livestock Research for Rural Development, 31, pp. 1-13. http://www.lrrd.org/lrrd31/11/orlan31170.html

Caplice, E. and Fitzgerald G.F., 1999. Food fermentations: role of microorganisms in food production and preservation, International Journal of Food Microbiology, 50, pp. 131-149. http://doi.org/10.1016/S0168-1605(99)00082-3

Carrasco, T., Valiño, E., Ibarra, A., García, Y. and Pérez, T., 2003. Efecto negativo de la humedad en la fermentación en estado sólido del bagazo de caña de azúcar. Revista Cubana de Ciencia Agrícola, 37, pp. 37-41. https://www.redalyc.org/articulo.oa?id=193018072006

Cubillos, D.I., Rodríguez, A., Rache, L.Y. and Borrás, L.M., 2024. Tamo de cereales como suplemento alimenticio procesado por fermentación en estado sólido. Ciencia en Desarrollo, 15, pp. 55-63. http://doi.org/10.19053/01217488.v15.n1.2024.17073

Elías, A., Lezcano, O., Lezcano, P., Cordero, J. and Quintana, L., 1990. Reseña descriptiva sobre el desarrollo de una tecnología de enriquecimiento proteico de la caña de azúcar mediante fermentación en estado sólido (Saccharina). Revista Cubana de Ciencia Agrícola, 24, pp. 3

Fedegan, 2022. Consumo aparente per cápita anual de carnes en Colombia, recuperado https://www.fedegan.org.co/estadisticas/consumo-0. Mayo 2024

Fernández, Y., Pedraza, R.M., Baños, Y.H., Llanes, A., Torres, I.C., Montalván, J. and Noy, A., 2016. Indicadores de crecimiento de una población de 48 clones de caña de azúcar (Saccharum spp.) con valor forrajero. Agricultura sostenible y su enseñanza, 22, pp. 17-28

Giacomini, A.A., Batista, K., de Andrade, J.B., Pereira, M.L., Gerdes, L., Teixeira, W., Pozar, I., Colozza, M.T. and Ferrari, E., 2014. Potencial de cana de agúcar sucroalcooleira para alimentando de ruminantes ao longo do ciclo da cultura. Boletim De Indústria Animal, 71, pp. 8-17. http://doi.org/10.17523/bia.v71n1p8

Gómez-Merino, F.C., Trejo-Tellez, L.I., Salazar-Ortiz, J., Perez-Sato, J.A., Sentíes-Herrera, H.E., Bello-Bello, J.J. and Aguilar-Rivera, N., 2017. La diversificación de la agroindustria azucarera como estrategia para México. Agroproductividad, 10, pp. 7-12

Hernández, G.S., 2010. Importancia de la fibra en la alimentación de los bovinos. Tesis, MVZ Universidad Michoacana de San Nicolás de Hidalgo, Mexico.

ISO 15213:2003. Microbiology of food and animal feeding stuffs- Horizontal method for the enumeration of sulfite-reducing bacteria growing under anaerobic conditions

Kim, D., Lee, K.D. and Choi, K.Ch., 2021. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agriculture and Food, 6, pp. 216-234. http://doi.org/10.3934/agrfood.2021014

Mooijman, K.A., Pielaat, A. and Kuijpers, A.F., 2019. Validation of EN ISO 6579-1. 2018. Microbiology of the food chain- Horizontal method for the detection, enumeration and serotyping of Salmonella Part 1 detection of Salmonella spp. International Journal of Food Microbiology, 288, pp 3-12. http://doi.org/10.1016/j.ijfoodmicro.2018.03.022

Mokoena, M.P., Omatola, C.A. and Olaniran, A.O., 2021. Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules, 26, pp. 1-13. http://doi.org/10.3390/molecules26227055

Munagala, M. and Yogendra, S., 2020. Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. Bioresource Technology, 303, pp. 1-10. http://doi.org/10.1016/j.biortech.2020.122929

Navarro, J. Evaluación de la calidad microbiológica de Trachurus picturatus murphyi “jurel” y Aulacomya ater “choro” comercializados en diferentes mercados de los distritos de San Juan de Lurigancho y San Martín de Porres. Pregrado. Universidad Nacional Mayor de San Marcos.

Newaj-Fyzul, A., Al-Harbi, A.H. and Austin, B., 2014. Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture, 431, pp. 1-11. http://doi.org/10.1016/j.aquaculture.2013.08.026

Oiza, N., Moral-Vico, J., Sánchez, A., Oviedo, E.R. and Gea, T., 2022. Solid-state fermentation from organic wastes: A new generation of bioproducts. Processes, 10, pp. 1-16. http://doi.org/10.3390/pr10122675

Paroha, S., Srivastava, V.P. and Chaturvedi, N., 2020. Sugarcane bagasse as dietary fibre. Indian Journal of Pure & Applied Biosciences, 8, pp. 590-597. http://doi.org/10.18782/2582-2845.8442

Pérez, R., Ben, N., Abriouel, H., López, R., Martínez, M. and Gálvez, A., 2005. Microbiological study of lactic acid fermentation of Caper berries by molecular and culture-dependent methods. Applied and Environmental Microbiology, 71, pp. 7872-7879. http://doi.org/10.1128/AEM.71.12.7872-7879.2005

Ramos, J., Elías, A., Herrera, F., Aranda, E. and Mendoza, G., 2007. Processes for the production of an energetic-proteinic animal feed. Effect of final molasses levels on the solid-state fermentation of Saccha-sorghum and Saccha-polishing. Cuban Journal of Agricultural Science, 41, pp. 139-143. https://www.redalyc.org/articulo.oa?id=193017658008

Ramos, J.A., Elías, A. and Herrera, F., 2006. Procesos para la producción de un alimento energético - proteico para animales. Efecto de cuatro fuentes energéticas en la fermentación en estado sólido (FES) de la caña de azúcar. Revista Cubana de Ciencia Agrícola, 40, pp. 51-58. http://www.redalyc.org/articulo.oa?id=193017708008

Ratchataporn, L., Suntariporn, D., Ruangyote, P., Somporn, D. and Prapatsorn, S., 2018. Effect of urea- and molasses-treated sugarcane bagasse on nutrient composition and in vitro rumen fermentation in dairy cows. Agriculture and Natural Resources, 52, pp. 622-627. http://doi.org/10.1016/j.anres.2018.11.010

Rodríguez, B.Y., 2005. Obtención de un alimento energético proteico a través de la FES de la caña de azúcar y el tubérculo de yuca. Magíster. Universidad Agraria de la Habana. Instituto de Ciencia Animal.

Rodríguez, G.A., Polo, S.M. Ángel, M. and Buitrago, A.M., 2019. La agroindustria panelera impulsando el desarrollo rural en Colombia. Bogotá. Roffaprint Editores S.A.S

Tarraran, L. and Mazzoli, R., 2018. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives. FEMS Microbiology Letters, 365, pp. 1-34 http://doi.org/10.1093/femsle/fny126

Tripathi, M. and Giri, S.K., 2014. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Food, 9, pp. 225-241. http://doi.org/10.1016/j.jff.2014.04.030

Valiño, E., Elias, A., Torres, V. and Albelo, N., 2002. Study of the microbial content on fresh sugar cane bagasse as substrate for animal feeding by solid state fermentation. Cuban Journal of Agricultural Science, 36, pp. 359-364.

Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, pp. 3583-3597. http://doi.org/10.3168/jds.S0022-0302(91)78551-2

Velázquez-López, A., Covatzin-Jirón, D., Toledo-Meza, M.D. and Vela-Gutiérrez, G., 2018. Bebida fermentada elaborada con bacterias ácido-lácticas aisladas del pozol tradicional chiapaneco. Ciencia UAT, 13, pp. 165-178. http://doi.org/10.29059/cienciauat.v13i1.871

Wang, Y., Wu, J., Mengxin, L., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y. and Geng, W., 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 12, pp. 612285. http://doi.org/10.3389/fbioe.2021.612285




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i2.56481

DOI: http://dx.doi.org/10.56369/tsaes.5648



Copyright (c) 2025 Leidy Yanira Rache Cardenal, Laura Milena Gómez Martínez, José Jobanny Martínez, Alejandra Rodriguez Montaña, Luis Miguel Borrás Sandoval

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.