PRODUCTION AND PROFITABILITY OF LANDRACE BLUE MAIZE UNDER DIFFERENT PLANT DENSITIES AND WATER REGIMENS

Reyna Armendariz-Beltran, Eleazar Lugo-Cruz, Rafael Ruíz-Hernández, Francisco Zavala-García, Nelly Cristina Ramírez-Grimaldo

Abstract


Background: It is necessary to increase maize production due to the increase in global food demand. Producers in Mexico prefer to grow native varieties of maize, which have a wide genetic diversity that has not been fully studied. These native maize are being lost due in part to their low yields, as well as their low or no profitability. Despite this, in this germplasm it is possible the presence of genotypes that show high grain production and economic gains. Increasing plant density can be a viable strategy that contributes to improving the production systems of these native maize. Objective: To analyze the agronomic behavior and profitability of blue native maize genotypes in two population densities and two water regimes. Methodology: The study was carried out in the spring summer 2022 cycle in Nuevo León, Mexico (24°19'11.4"N, 99°56'34.8"W, 1980 m.a.s.l.). The treatments were the combination of four genotypes (Mimbres, Ascensión, Siberia and a Hybrid as a control), two water regimes (irrigated and rainfed) and two population densities (62,500 and 83,333 plants ha-1), which were distributed in a random complete block design with split-split plot design. Analysis of variance, Pearson correlation and principal components were carried out to understand the behavior and relationship between variables. Results: Grain yield was 38% higher in irrigation compared to rainfed. Increasing the density to 83,333 plants ha-1 also contributed to increasing grain yield and economic profitability, only in native maize. The number of grains per m2 and grain weight per ear were the components that were mostly associated with the benefit-cost ratio and grain yield. Implications: The native maize studied are important genetic resources with a favorable response to high plant density, therefore, increasing the density to 83,333 plants ha-1 is a strategy that could be explored to increase grain production and profitability of native maize, in addition, this proposal could be more easily adopted by producers, since it would not significantly affect their production cost. Conclusions: It was feasible to cultivate native maize at a density of 83,333 plants ha-1 both under irrigation and rainfed conditions, since only with this density and such maize genotypes was it possible to obtain the highest grain yield and economic gains.

Keywords


pigmented native maize; grain yield and its components; cost-benefit ratio.

Full Text:

PDF

References


Aguilar-Carpio, C., Escalante-Estrada, J.A.S., Aguilar-Mariscal, I., Mejia-Contreras, J.A., Conde-Martinez, V.F. and Trinidad-Santos, A., 2015. Rendimiento y rentabilidad de maíz en función del genotipo, biofertilizante y nitrógeno, en clima cálido. Tropical and Subtropical Agroecosystems, 18(2), pp.151–163. http://dx.doi.org/10.56369/tsaes.1953

Alemán-Pérez, R.D., Bravo-Medina, C.A. and Ibarra-Tellez, E.M., 2024. Photosynthetic capacity, yield components, and population density of a local corn genotype from Ecuadorian Amazonia. Agrociencia, 58(1), pp.1–14. https://doi.org/10.47163/agrociencia.v58i1.3036

Al-Naggar, A.M.M., Shabana, M.R.A., Hassanein, M.S. and Metwally, A.M.A., 2023. Effects of elevated plant density and reduced nitrogen on agronomic and yield attributes of maize inbred lines and their diallel crosses. SABRAO Journal of Breeding and Genetics, 55(5), pp.1843–1854. https://doi.org/10.54910/sabrao2023.55.5.35

Aslam, M., Maqbool, M.A. and Cengiz, R., 2015. Drought stress in maize (Zea mays L.). 1st ed. Springer Briefs in Agriculture. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-25442-5

Assefa, Y., Prasad, P.V.V., Carter, P., Hinds, M., Bhalla, G., Schon, R., Jeschke, M., Paszkiewicz, S. and Ciampitti, I.A., 2016. Yield responses to planting density for US modern corn hybrids: a synthesis-analysis. Crop Science, 56(5), pp.2802–2817. https://doi.org/10.2135/cropsci2016.04.0215

Ayala-Garay, A.V. and Vázquez-Hernández, B., 2024. Rentabilidad de la producción de maíz en sistemas agroecológico y convencional en dos comunidades de Tlaxcala. Agricultura, Sociedad y Desarrollo, 21(1), pp.1–12. https://doi.org/10.22231/asyd.v21i1.1566

Ayvar-Serna, S., Díaz-Nájera, J.F., Vargas-Hernández, M., Mena-Bahena, A., Tejeda-Reyes, M.A. and Cuevas-Apresa, Z., 2020. Rentabilidad de sistemas de producción de grano y forraje de híbridos de maíz, con fertilización biológica y química en trópico seco. Terra Latinoamericana, 38(1), pp.9–16. https://doi.org/10.28940/terra.v38i1.507

Di Rienzo, J.A., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M. and Robledo, C.W., 2020. Infostat - Software estadístico. [online] InfoStat versión 2020. Available at: .

Djaman, K., Allen, S., Djaman, D.S., Koudahe, K., Irmak, S., Puppala, N., Darapuneni, M.K. and Angadi, S.V., 2022. Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental Challenges, 6, p.100417. https://doi.org/10.1016/j.envc.2021.100417

DOF, 2022. Reglas de Operación del Programa de Precios de Garantía a Productos Alimentarios Básicos, a cargo de Seguridad Alimentaria Mexicana, SEGALMEX, sectorizada en la Secretaría de Agricultura y Desarrollo Rural, para el ejercicio fiscal 2023. [online] Diario Oficial de la Federación. Available at: https://dof.gob.mx/nota_detalle.php?codigo=5676231&fecha=30/12/2022#gsc.tab=0

FAO, 2015. Construyendo una visión común para la agricultura y alimentación sostenibles. [online] Roma: Organización de las naciones unidas para la alimentación y la agricultura. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/b5da6a68-9cd5-40b1-84f8-3df446066651/content

Hellin, J., Bellon, M.R. and Hearne, S.J., 2014. Maize landraces and adaptation to climate change in Mexico. Journal of Crop Improvement, 28(4), pp.484–501. https://doi.org/10.1080/15427528.2014.921800

Hernández, M.D., Alfonso, C., Cerrudo, A., Cambareri, M., Della Maggiora, A., Barbieri, P., Echarte, M.M. and Echarte, L., 2020. Eco-physiological processes underlying maize water use efficiency response to plant density under contrasting water regimes. Field Crops Research, 254, p.107844. https://doi.org/10.1016/j.fcr.2020.107844

INEGI, 2024. Mapa digital de México en línea. [online] Instituto Nacional de Estadística y Geografía. Available at: https://gaia.inegi.org.mx/mdm6/?v=bGF0OjIzLjMyMDA4LGxvbjotMTAxLjUwMDAwLHo6MSxsOmMxMTFzZXJ2aWNpb3N8dGMxMTFzZXJ2aWNpb3M= [Accessed 18 May 2024].

INIFAP, 2017. Agenda Técnica Agrícola Nuevo León. 2nd ed. Ciudad de México: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias.

INIFAP, 2022. Laboratorio nacional de modelaje y sensores remotos. [online] Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Available at: https://clima.inifap.gob.mx/lnmysr/Index

Lowder, S.K., Sánchez, M.V. and Bertini, R., 2021. Which farms feed the world and has farmland become more concentrated? World Development, 142, p.105455. https://doi.org/10.1016/j.worlddev.2021.105455

McLean-Rodríguez, F.D., Camacho-Villa, T.C., Almekinders, C.J.M., Pè, M.E., Dell’Acqua, M. and Costich, D.E., 2019. The abandonment of maize landraces over the last 50 years in Morelos, Mexico: a tracing study using a multi-level perspective. Agriculture and Human Values, 36, pp.651–668. https://doi.org/10.1007/s10460-019-09932-3

Ramírez-Díaz, J.L., Alemán-de la Torre, I., Bautista-Ramírez, E., Vidal-Martínez, V.A., Salinas-Moreno, Y. and Ledesma-Miramontes, A., 2021. Respuesta de híbridos subtropicales de maíz a la densidad de población. Revista Fitotecnia Mexicana, 44(2), pp.173–173. https://doi.org/10.35196/rfm.2021.2.173

Saglam, A., Kadioglu, A., Demiralay, M. and Terzi, R., 2014. Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Botanica Croatica, 73(2), pp.315–332.

Shah, A.N., Tanveer, M., Abbas, A., Yildirim, M., Shah, A.A., Ahmad, M.I., Wang, Z., Sun, W. and Song, Y., 2021. Combating dual challenges in maize under high planting density: stem lodging and kernel abortion. Frontiers in Plant Science, 12, p.699085. https://doi.org/10.3389/fpls.2021.699085

SIAP, 2024. Avance de siembras y cosechas. [online] Servicio de Información Agroalimentaria y Pesquera. Available at: https://nube.siap.gob.mx/avance_agricola/

Testa, G., Reyneri, A. and Blandino, M., 2016. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. European Journal of Agronomy, 72, pp.28–37. http://dx.doi.org/10.1016/j.eja.2015.09.006

Thompson, W.H., Pietsch, D., Blumenthal, J.M., Ibrahim, A.M.H. and Baltensperger, D.D., 2013. Agronomic optimum seeding rate for irrigated maize in Texas is concomitant to growing season mean daily minimum temperature. Journal of Agronomy and Crop Science, 199(4), pp.299–307. https://doi.org/10.1111/jac.12015

Yan, P., Pan, J., Zhang, W., Shi, J., Chen, X. and Cui, Z., 2017. A high plant density reduces the ability of maize to use soil nitrogen. PLoS ONE, 12(2), p.e0172717. https://doi.org/10.1371/journal.pone.0172717

Zhang, Y., Xu, Z., Li, J. and Wang, R., 2021. Optimum planting ensity improves resource use efficiency and yield stability of rainfed maize in semiarid climate. Frontiers in Plant Science, 12, p.752606. https://doi.org/10.3389/fpls.2021.752606




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.56455

DOI: http://dx.doi.org/10.56369/tsaes.5645



Copyright (c) 2024 Reyna Armendariz-Beltran, Eleazar Lugo-Cruz, Rafael Ruíz-Hernández, Francisco Zavala-García, Nelly Cristina Ramírez-Grimaldo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.