TREE STRUCTURE, SPECIES COMPOSITION, AND CARBON STORAGE IN TROPICAL SILVOPASTORAL SYSTEMS

Danilo Enrique Morales Ruiz, Deb Raj Aryal, Gilberto Villanueva-López, F. Casanova-Lugo, J.A. Venegas-Venegas, R. Pinto-Ruiz, P. Martinez-Zurimendi, F. Guevara-Hernandez, M.B. Reyes-Sosa, M.A. La O-Arias

Abstract


Background: Silvopastoral systems, agroforestry with grazing livestock, have a high capacity for carbon sequestration in tree biomass and enhance biological diversity in grasslands, contributing to counteract the negative effects of deforestation led by the expansion of open pasturelands. Objective: To assess tree structure, species diversity, and carbon storage in biomass components in three different silvopastoral systems (SPS): 1) scattered trees in pasture (STP), 2) live fences (LF), 3) forest plantations (FP), and compare them with pasture monoculture (PM). Methodology: Carbon stock in biomass, relative importance value of tree species, Shannon´s biodiversity, Pileou´s evenness, and Sorenson´s similarity indices were calculated in forty sampling plots, ten for each system in Tabasco, Mexico. Results: Biomass stock varied significantly (P<0.05) between SPS and PM. FP had the highest carbon stock in the biomass pool with an average of 73.5 MgCha-1, followed by STP (45.8), LF (20.8), and PM (9.1). STP system tended to be more diverse with a relatively even distribution of tree species, while tree density per hectare was greater in FP. Species composition and their relative value indices varied between SPS but there was a medium level of similarity between them. Furthermore, we determined an optimum basal area of 14.5 m2ha-1 to harmonize the trade-offs between carbon sequestration in woody biomass and forage production in grass (herbaceous) biomass in these SPS. Implications: These results are useful to farmers and policymakers in developing and incentivizing climate-smart livestock production systems in line with the Sustainable Development Goals (SDGs). Conclusion: SPS are biodiverse and accumulate more carbon in biomass than pasture monoculture. The STP was the most biodiverse, followed by LF and FP, while carbon storage was higher in FP followed by STP and LF. An optimal tree cover with 14.5 m2ha-1 basal area can balance the trade-off between carbon sequestration and forage productivity in SPS. 

Keywords


Livestock agroforestry; carbon sequestration; tree biomass; grassland management; tree diversity.

Full Text:

PDF

References


Alcudia-Aguilar, A., Villanueva-López, G., Alayón-Gamboa, J.A., Nahed-Toral, J., Aryal, D.R., Casanova-Lugo, F., Ayala-Montejo, D., Martínez-Zurimendi, P., Jiménez-Ferrer, G., De La Cruz-López, C.A. and Medrano-Pérez, O.R., 2024. Plant species richness in agroforestry systems correlates to soil fertility in the humid tropic of Mexico. Agroforestry Systems, 98(4), pp.891–909. https://doi.org/10.1007/s10457-024-00961-4

Aryal, D.R., De Jong, B.H.J., Gaona, S.O., Vega, J.M., Olguín, L.E. and Cruz, S.L., 2022a. Fine Wood Decomposition Rates Decline with the Age of Tropical Successional Forests in Southern Mexico: Implications to Ecosystem Carbon Storage. Ecosystems, 25(3), pp.661–677. https://doi.org/10.1007/s10021-021-00678-w

Aryal, D.R., De Jong, B.H., Sánchez-Silva, S., Haas-Ek, A., Esparza-Olguin, L., Ochoa-Gaona, S., Ghimire, R. and Morales-Ruiz, D. E., 2024. Biomass recovery along a tropical forest succession: Trends on tree diversity, wood traits and stand structure. Forest Ecology and Management, 555, pp.121709. https://doi.org/10.1016/j.foreco.2024.121709

Aryal, D.R., Gómez-González, R.R., Hernández-Nuriasmú, R. and Morales-Ruiz, D.E., 2019. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry systems, 93(1), pp.213–227. https://doi.org/10.1007/s10457-018-0310-y

Aryal, D.R., Morales Ruiz, D.E., Tondopó Marroquín, C.N., Pinto Ruiz, R., Guevara Hernández, F., Venegas Venegas, J.A., Ponce Mendoza, A., Villanueva López, G., Casanova Lugo, F. and Rodríguez Larramendi, L.A., 2018. Soil organic carbon depletion from forests to grasslands conversion in Mexico: A Review. Agriculture, 8(11), p.181. https://doi.org/10.3390/agriculture8110181

Aryal, D.R., Morales-Ruiz, D.E., López-Cruz, S., Tondopó-Marroquín, C.N., Lara-Nucamendi, A., Jiménez-Trujillo, J.A., Pérez-Sánchez, E., Betanzos-Simon, J.E., Casasola-Coto, F. and Martínez-Salinas, A., 2022b. Silvopastoral systems and remnant forests enhance carbon storage in livestock-dominated landscapes in Mexico. Scientific Reports, 12(1), p.16769. https://doi.org/10.1038/s41598-022-21089-4

Brook, R., Forster, E., Styles, D., Mazzetto, A.M., Arndt, C., Esquivel, M.J. and Chadwick, D., 2022. Silvopastoral systems for offsetting livestock emissions in the tropics: a case study of a dairy farm in Costa Rica. Agronomy for Sustainable Development, 42(5), p.101. https://doi.org/10.1007/s13593-022-00834-z

Cach-Pérez, M.J., Villanueva López, G., Alayón Gamboa, J.A., Nahed Toral, J. and Casanova Lugo, F., 2022. Microclimate management: From traditional agriculture to livestock systems in tropical environments. In: Galanakis, C.M. (eds.) Environment and climate-smart food production. Springer, Cham., pp.1-29. https://doi.org/10.1007/978-3-030-71571-7_1

Cairns, M.A., Brown, S., Helmer, E.H. and Baumgardner, G.A., 1997. Root biomass allocation in the world’s upland forests. Oecologia, 111(1), pp.1–11. https://doi.org/10.1007/s004420050201

Casanova-Lugo, F., Villanueva-López, G., Alcudia-Aguilar, A., Nahed-Toral, J., Medrano-Pérez, O.R., Jiménez-Ferrer, G., Alayon-Gamboa, J.A., Aryal, D.R., 2022. Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rangeland Ecology & Management, 80, pp.31-38. https://doi.org/10.1016/j.rama.2021.09.006

Castillo, M.S., Tiezzi, F. and Franzluebbers, A.J., 2020. Tree species effects on understory forage productivity and microclimate in a silvopasture of the Southeastern USA. Agriculture, Ecosystems & Environment, 295, p.106917. https://doi.org/10.1016/j.agee.2020.106917

Chan-Coba, G., De Jong, B.H.J., González-Valdivia, N.A., López-Hernández, J.C., Morales-Ruiz, D.E., Venegas-Venegas, J.A., Reyes-Sosa, M. and Aryal, D.R., 2022. Densidad de madera de especies arbóreas dominantes de la selva tropical subperennifolia de Calakmul, México. Ecosistemas y Recursos Agropecuarios, 9(3), p.e3386. https://doi.org/10.19136/era.a9n3.3386

Chave, J., Réjou?Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., Duque, A., Eid, T., Fearnside, P.M. and Goodman, R.C., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), pp.3177–3190. https://doi.org/10.1016/j.gecco.2022.e02359

Contreras-Santos, J.L., Falla-Guzmán, C.K., Rodríguez, J.L., Fernando-Garrido, J., Martínez-Atencia, J., and Aguayo-Ulloa, L. 2023. Reserva de carbono en sistemas silvopastoriles: Un estudio en el Medio Sinú, Colombia. Agronomía Mesoamericana, 34(1), p.49138. https://doi.org/10.15517/am.v34il.49138

De la Cruz-López, C.A., Villanueva-López, G., Casanova-Lugo, F., Martínez-Zurimendi, P. and Aryal, D., 2023. Carbon storage in tree biomass and soils in silvopastoral systems of the humid tropics. Tropical and Subtropical Agroecosystems, 27(1), p.22. http://doi.org/10.56369/tsaes.5055

de Souza, T.A.F., da Silva, L.J.R., and dos Santos Nascimento, G., 2023. Amazonian deforestation and its influence on soil biotic factors and abiotic properties. Pedobiologia, 97, p.150865. https://doi.org/10.1016/j.pedobi.2023.150865

Díaz-Gallegos, J.R.D., Acosta, O.C., Gil, G.G., 2002. Distribución espacial y estructura arbórea de la selva baja subperennifolia en un ejido de la Reserva de la Biosfera Calakmul, Campeche, México. Ecosistemas y Recursos Agropecuarios, 18(35), p.11-28. https://doi.org/10.19136/era.a18n35.235

Dollinger, J. and Jose, S., 2018. Agroforestry for soil health. Agroforestry Systems, 92, pp.213–219. https://doi.org/10.1007/s10457-018-0223-9

Esquivel, M.J., Vilchez-Mendoza, S., Harvey, C.A., Ospina, M.A., Somarriba, E., Deheuvels, O., de M. Virginio Filho, E., Haggar, J., Detlefsen, G. and Cerdan, C., 2023. Patterns of shade plant diversity in four agroforestry systems across Central America: a meta-analysis. Scientific Reports, 13(1), p.8538. https://doi.org/10.1038/s41598-023-35578-7

Fernandes, C. de A., Matsumoto, S.N. and Fernandes, V.S., 2018. Carbon stock in the development of different designs of biodiverse agroforestry systems. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, pp.720–725. https://doi.org/10.1590/1807-1929/agriambi.v22n10p720-725

Fernández, P.D., Gasparri, N.I., Rojas, T.N., Banegas, N.R., Nasca, J.A., Jobbágy, E.G. and Kuemmerle, T., 2024. Silvopastoral management for lowering trade-offs between beef production and carbon storage in tropical dry woodlands. Science of The Total Environment, 912, p.168973. https://doi.org/10.1016/j.scitotenv.2023.168973

Gallardo-Cruz, J.A., Peralta-Carreta, C., Solórzano, J.V., Fernández-Montes de Oca, A.I., Nava, L.F., Kauffer, E., and Carabias, J., 2021. Deforestation and trends of change in protected areas of the Usumacinta River basin (2000–2018), Mexico and Guatemala. Regional Environmental Change, 21, pp. 21, p.97. https://doi.org/10.1007/s10113-021-01833-8

Hernández-Núñez, H.-E., Andrade, H.-J., Suárez-Salazar, J.-C., Gutiérrez-García, G.-A., Trujillo-Trujillo, E. and Casanoves, F., 2021. Carbon storage in agroforestry systems in Colombia’s Eastern Plains. Revista de Biología Tropical, 69(1), pp.352–368. http://dx.doi.org/10.15517/rbt.v69i1.42959

Pease, A.A., Capps, K.A., Castillo, M.M., Hendrickson, D.A., Mendoza-Carranza, M., Rodiles-Hernández, R., ... and Contreras-MacBeath, T., 2023. Rivers of Mexico. In: Hudson et al., (eds.) Rivers of North America, pp. 974-1024. Academic Press. https://doi.org/10.1016/B978-0-12-818847-7.00004-5

INEGI, 2009. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos, Zona Interestatal Chiapas-Tabasco. Clave geoestadística 17007. Instituto Nacional de Estadística y Geografía, Mexico. https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/Zonas%20Interestatales_/CT001.pdf Accessed on 21 July 2024.

Kremen, C. and Merenlender, A.M., 2018. Landscapes that work for biodiversity and people. Science, 362(6412), p.eaau6020. https://doi.org/10.1126/science.aau602

Kumar, R.V., Roy, A.K., Kumar, S., Gautam, K., Singh, A.K., Ghosh, A., Singh, H.V. and Koli, P., 2022. Silvopasture systems for restoration of degraded lands in a semiarid region of India. Land Degradation & Development, 33(15), pp.2843–2854. https://doi.org/10.1002/ldr.4359.

Lara-Pérez, L.A., Villanueva-López, G., Oros-Ortega, I., Aryal, D.R., Casanova-Lugo, F. and Ghimire, R., 2023. Seasonal variation of arthropod diversity in agroforestry systems in the humid tropics of Mexico. Arthropod-Plant Interactions, 17, pp.799–810. https://doi.org/10.1007/s11829-023-10001-0

López-Hernández, J.C., Aryal, D.R., Villanueva-López, G., Pinto-Ruiz, R., Reyes-Sosa, M.B., Hernández-López, A., Casanova-Lugo, F., Venegas-Venegas, J.A., Medina-Jonapa, F.J. and Guevara-Hernández, F., 2023. Carbon storage and sequestration rates in Leucaena leucocephala-based silvopasture in Southern Mexico. Agroforestry Systems, 98, pp.1105–1121. https://doi.org/10.1007/s10457-023-00922-3

López-Santiago, J.G., Casanova-Lugo, F., Villanueva-López, G., Díaz-Echeverría, V.F., Solorio-Sánchez, F.J., Martínez-Zurimendi, P., Aryal, D:R: and Chay-Canul, A.J., 2019. Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforestry Systems, 93, pp.199-211. https://doi.org/10.1007/s10457-018-0259-x

Mackay?Smith, T.H., López, I.F., Burkitt, L.L. and Reid, J.I., 2023. Pasture production–diversity relationships in a k?nuka silvopastoral system. Ecological Solutions and Evidence, 4(2), p.e12218. https://doi.org/10.1002/2688-8319.12218

Marques, A., Martins, I.S., Kastner, T., Plutzar, C., Theurl, M.C., Eisenmenger, N., Huijbregts, M.A.J., Wood, R., Stadler, K., Bruckner, M., Canelas, J., Hilbers, J.P., Tukker, A., Erb, K. and Pereira, H.M., 2019. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology & Evolution, 3(4), pp.628–637. https://doi.org/10.1038/s41559-019-0824-3.

Martin, A.R., Doraisami, M. and Thomas, S.C., 2018. Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience, 11, pp.915–920. https://doi.org/10.1038/s41561-018-0246-x

Mavisoy, H., Vallejos, A.R.R., Narváez-Herrera, J.P., Sánchez, Á., Fangueiro, D. and De Almeida, A.M., 2024. Using silvopastoral systems for the mitigation of greenhouse gas emissions from livestock in the Colombian Amazon. Agroforestry Systems, 98(2), pp.337–352. https://doi.org/10.1007/s10457-023-00912-5.

Merino, A., Omil, B., Piñeiro, V., Barros, N., Souza-Alonso, P. and Campo, J., 2023. Soil C dynamics after deforestation and subsequent conversion of arable cropland to grassland in humid temperate areas. Science of The Total Environment, 901, p.165793. https://doi.org/10.1016/j.scitotenv.2023.165793

Monarrez-Gonzalez, J.C., Gonzalez-Elizondo, M.S., Marquez-Linares, M.A., Gutierrez-Yurrita, P.J. and Perez-Verdin, G., 2020. Effect of forest management on tree diversity in temperate ecosystem forests in northern Mexico. PLOS ONE, [online] 15(5), p.e0233292. https://doi.org/10.1371/journal.pone.0233292

Morales-Ruiz, D.E., Aryal, D.R., Pinto Ruiz, R., Guevara Hernández, F., Casanova Lugo, F. and Villanueva Lopez, G., 2021. Carbon contents and fine root production in tropical silvopastoral systems. Land Degradation & Development, 32(2), pp.738–756. https://doi.org/10.1002/ldr.3761

Mueller-Dombois, D. and Ellemberg H., 1974. Aims and methods of vegetation ecology. John Wiley and Sons. New York, pp.547. https://www.cabidigitallibrary.org/doi/full/10.5555/19750621880

Pendrill, F., Gardner, T.A., Meyfroidt, P., Persson, U.M., Adams, J., Azevedo, T., Bastos Lima, M.G., Baumann, M., Curtis, P.G., De Sy, V., Garrett, R., Godar, J., Goldman, E.D., Hansen, M.C., Heilmayr, R., Herold, M., Kuemmerle, T., Lathuillière, M.J., Ribeiro, V., Tyukavina, A., Weisse, M.J. and West, C., 2022. Disentangling the numbers behind agriculture-driven tropical deforestation. Science, 377(6611), p.eabm9267. https://doi.org/10.1126/science.abm9267

Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. Journal of theoretical biology, 13, pp.131–144. https://doi.org/10.1016/0022-5193(66)90013-0

Pinkus-Rendón, M.J. and Contreras-Sánchez, A., 2012. Impacto socioambiental de la industria petrolera en Tabasco: el caso de la Chontalpa. LiminaR, 10(2), pp.122–144. https://www.scielo.org.mx/scielo.php?pid=S1665-

Qu, X., Li, X., Bardgett, R.D., Kuzyakov, Y., Revillini, D., Sonne, C., Xia, C., Ruan, H., Liu, Y., Cao, F., Reich, P.B. and Delgado-Baquerizo, M., 2024. Deforestation impacts soil biodiversity and ecosystem services worldwide. Proceedings of the National Academy of Sciences, 121(13), p.e2318475121. https://doi.org/10.1073/pnas.2318475121.

Ramírez-Marcial, N., Rueda-Pérez, M.L., Ferguson, B.G., Jiménez-Ferrer, G., 2012. Caracterización del sistema agrosilvopastoril en la Depresión Central de Chiapas. Avances en Investigación Agropecuaria, 16(2), 7-22. https://www.redalyc.org/pdf/837/83723532001.pdf

Ramos-Hernández, E. and Martínez-Sánchez, J.L., 2020. Almacenes de biomasa y carbono aéreo y radicular en pastizales de Urochloa decumbens y Paspalum notatum (Poaceae) en el sureste de México. Revista de Biología Tropical, 68(2), pp.440–451. http://dx.doi.org/10.15517/rbt.v68i2.37395

Schinato, F., Munka, M., Olmos, V. and Bussoni, A., 2023. Microclimate, forage production and carbon storage in a eucalypt-based silvopastoral system. Agriculture, Ecosystems & Environment, 344, p.108290. https://doi.org/10.1016/j.agee.2022.108290

Shannon, C.E., 1949. The mathematical theory of communication, by CE Shannon (and recent contributions to the mathematical theory of communication), W. Weaver. University of illinois Press. Champaign, IL, USA. https://doi.org/10.1145/584091.58409

Skonieski, F.R., Souza, E.R.D., Gregolin, L.C.B., Fluck, A.C., Costa, O.A.D., Destri, J. and Neto, A.P., 2021. Physiological response to heat stress and ingestive behavior of lactating Jersey cows in silvopasture and conventional pasture grazing systems in a Brazilian subtropical climate zone. Tropical Animal Health and Production, 53(213), pp.1-9. https://doi.org/10.1007/s11250-021-02648-9

Sorensen, T., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske skrifter, 5, pp.1–34. https://doi.org/10.1007/BF00052021

Sotelo Cabrera, M.E., Suárez Salazar, J.C., Álvarez Carrillo, F., Castro Nuñez, A., Calderón Soto, V.H. and Arango, J., 2017. Sistemas sostenibles de producción ganadera en el contexto amazónico Sistemas silvopastoriles:¿ una opción viable? Publicación CIAT. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&authuser=1&q=Sistemas+sostenibles+de+producci%C3%B3n+ganadera+en+el+contexto+amaz%C3%B3nico+Sistemas+silvopastoriles%3A%C2%BF+una+opci%C3%B3n+viable%3F&btnG=

Soto-Pinto, L., Anzueto, M., Mendoza, J., Ferrer, G.J., de Jong, B., 2010. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems, 78, 39-51. https://doi.org/10.1007/s10457-009-9247-5

StatSoft, Inc., 2010. Statistica 10.0. Statsoft Inc, Tulsa, OK 74104, USA. http://www.statsoft.com/Products/STATISTICA

Steinfeld, J.P., Miatton, M., Creamer, R.E., Ehbrecht, M., Valencia, V., Ballester, M.V.R. and Bianchi, F.J.J.A., 2024. Identifying agroforestry characteristics for enhanced nutrient cycling potential in Brazil. Agriculture, Ecosystems & Environment, 362, p.108828. https://doi.org/10.1016/j.agee.2023.108828.

Torres-Rivera, J.A., Espinoza-Domínguez, W., Reddiar-Krishnamurthy, L. and Vázquez-Alarcón, A., 2011. Secuestro de carbono en potreros arbolados, potreros sin árboles y bosque caducifolio de Huatusco, Veracruz. Tropical and Subtropical Agroecosystems, 13(3), pp.543–549. https://www.redalyc.org/pdf/939/93920942033.pdf

Tudela, F., 1989. La modernización forzada del trópico: el caso de Tabasco. Colegio de Mexico, Ciudad de Mexico. https://agris.fao.org/search/en/providers/122621/records/647396c23ed73003714ced85

Utello, M.J., 2024. Carbon balance in the silvopastoral systems of Caldén forest: sources or sinks of greenhouse gases? Agroforestry Systems. https://doi.org/10.1007/s10457-024-00984-x.ixed at two levels with a tropical grass. Agronomy, 12(1), p.100. https://doi.org/10.3390/agronomy12010100

Valenzuela-Que, F.G., Villanueva?López, G., Alcudia?Aguilar, A., Medrano?Pérez, O.R., Cámara?Cabrales, L., Martínez?Zurimendi, P., Casanova?Lugo, F. and Aryal, D.R., 2022. Silvopastoral systems improve carbon stocks at livestock ranches in Tabasco, Mexico. Soil Use and Management, 38(2), pp.1237–1249. https://doi.org/10.1111/sum.12799

Vargas-Simón, 2019. La biodiversidad en Tabasco: Estudio de Estado. Biodiversidad Mexicana. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Available online at: https://www.biodiversidad.gob.mx/region/EEB/estudios/ee_tabasco [Accessed 19 April 2024].

Vásquez, H.V., Valqui, L., Bobadilla, L.G., Arbizu, C.I., Alegre, J.C. and Maicelo, J.L., 2021. Influence of arboreal components on the physical-chemical characteristics of the soil under four silvopastoral systems in northeastern Peru. Heliyon, 7(8), p.e07725. https://doi.org/10.1016/j.heliyon.2021.e07725

Villanueva-López, G., Lara-Pérez, L.A., Oros-Ortega, I., Ramirez-Barajas, P.J., Casanova-Lugo, F., Ramos-Reyes, R. and Aryal, D.R., 2019. Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agriculture, ecosystems & environment, 286, p.106658. https://doi.org/10.1016/j.agee.2019.106658

Villanueva-López, G., Martínez-Zurimendi, P., Casanova-Lugo, F., Ramírez-Avilés, L. and Montañez-Escalante, P.I., 2015. Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico. Agroforestry Systems, 89(6), pp.1083–1096. https://doi.org/10.1007/s10457-015-9836-4.

Villanueva-Partida, C., Casanova-Lugo, F., Villanueva-López, G., González-Valdivia, N., Oros-Ortega, I. and Díaz-Echeverría, V., 2016. Influence of the density of scattered trees in pastures on the structure and species composition of tree and grass cover in southern Tabasco, Mexico. Agriculture, Ecosystems & Environment, 232, pp.1–8. https://doi.org/10.1016/j.agee.2016.07.020

Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C. and Chave, J., 2009. Data from: Towards a worldwide wood economics spectrum (dataset). Dryad. https://doi.org/10.5061/dryad.234




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.56223

DOI: http://dx.doi.org/10.56369/tsaes.5622



Copyright (c) 2025 Gilberto Villanueva-López

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.