APPLICATION OF REMOTE SENSING IN THE ESTIMATION OF AGRICULTURAL CROPS YIELDS: A BIBLIOMETRIC REVIEW

Irene Gutierrez Mora, Aleida Selene Hernández Cázares, Juan Valente Hidalgo Contreras, Jose Luis López Ayala, Joel Velasco Velasco

Abstract


Background: Agriculture, as a fundamental sector of the global economy, plays a key role in the socioeconomic fabric of countries. Obtaining accurate information on crop area and production is essential for promoting more efficient agricultural practices. Remote sensing has transformed modern agriculture by providing precise, real-time data on crop conditions. Bibliometric studies use quantitative methods to analyze the production and distribution of scientific information contained in various documents, aiding the understanding of knowledge trends in a specific area. These studies help to identify the evolution of remote sensing applied to agriculture. Objective: To analyze research on yield estimation/prediction in agricultural crops through satellite remote sensing in agricultural sciences. Methodology: Documents were retrieved from the Scopus® database using the equation “yield estimation AND crop AND satellite image OR mapping.” An exploratory analysis was conducted using Microsoft Excel®, and a bibliometric analysis was performed using VOSviewer® software. Results: A total of 818 documents from 1975 to 2023 were analyzed, grouped into six clusters, with prominent terms including deep learning, Sentinel 1 and 2, leaf area index, satellite, and digital mapping. The leading countries in scientific production are China and the USA. The main contributing fields of knowledge are Earth and Planetary Sciences (24%), Agricultural and Biological Sciences (18%), and Computer Science (17%). Implications: This study contributes to the synergistic exploration of agriculture, advanced data analysis techniques, and remote sensing to improve yield estimation by integrating satellite imagery and geographic data to enhance calibration and spatiotemporal accuracy. Conclusions: Four key components were identified in yield estimation through satellite imagery: 1) Artificial intelligence tools, 2) Use of NIR and SWIR bands, 3) Use and generation of NDVI, LAI, and biomass indices, and 4) Statistics applied to data science, correlation coefficients, and time series analysis.

Keywords


crop; yield estimation; satellite image; mapping.

Full Text:

PDF

References


Abdelmoneim, A.A., Khadra, R., Elkamouh, A., Derardja, B. and Dragonetti, G., 2024. Towards Affordable Precision Irrigation: An Experimental Comparison of Weather-Based and Soil Water Potential-Based Irrigation Using Low-Cost IoT-Tensiometers on Drip Irrigated Lettuce. Sustainability, [online] 16(1), p.306. https://doi.org/10.3390/su16010306

Aiolfi, S. and Luceri, B., 2024. See you on the Metaverse: A bibliometric expedition through the Metaverse landscape. Technological Forecasting and Social Change, [online] 207, p.123605. https://doi.org/10.1016/j.techfore.2024.123605

Akiyama, T., Inoue, Y., Shibayama, M., Awaya, Y. and Tanaka, N., 1996. Monitoring and predicting crop growth and analysing agricultural ecosystems by remote sensing. Agricultural and Food Science in Finland, [online] 5(3), pp.367–376. https://doi.org/10.23986/afsci.72741

Amankulova, K., Farmonov, N. and Mucsi, L., 2023. Time-series analysis of Sentinel-2 satellite images for sunflower yield estimation. Smart Agricultural Technology, [online] 3. https://doi.org/10.1016/j.atech.2022.100098

Bastiaanssen, W.G.M. and Ali, S., 2003. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems and Environment, [online] 94(3), pp.321–340. https://doi.org/10.1016/S0167-8809(02)00034-8

Bastian, M., Heymann, S. and Jacomy, M., 2009. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media, [online] 3(1), pp.361–362. https://doi.org/10.1609/icwsm.v3i1.13937

Bauer, M.E., 1975. The role of remote sensing in determining the distribution and yield of crops. Advances in Agronomy, [online] 27(C), pp.271–304. https://doi.org/10.1016/S0065-2113(08)70012-9

Bose, P., Kasabov, N.K., Bruzzone, L. and Hartono, R.N., 2016. Spiking Neural Networks for Crop Yield Estimation Based on Spatiotemporal Analysis of Image Time Series. IEEE Transactions on Geoscience and Remote Sensing, [online] 54(11), pp.6563–6573. https://doi.org/10.1109/TGRS.2016.2586602

Celik, M.F., Isik, M.S., Taskin, G., Erten, E. and Camps-Valls, G., 2023. Explainable Artificial Intelligence for Cotton Yield Prediction With Multisource Data. IEEE Geoscience and Remote Sensing Letters, [online] 20. https://doi.org/10.1109/LGRS.2023.3303643

Chew, B.J., Wiratama, W. and Goh, M.H., 2023. CANOPY NITROGEN ESTIMATION ON COTTON PLANT USING SATELLITE IMAGERY. In: Altan O., Sunar F., and Klein D., eds. Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. - ISPRS Arch. [online] International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. International Society for Photogrammetry and Remote Sensing. pp.73–79. https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-73-2023

Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E. and Herrera, F., 2011. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, [online] 5(1), pp.146–166. https://doi.org/10.1016/j.joi.2010.10.002

Conrad, C., Fritsch, S., Zeidler, J., Rücker, G. and Dech, S., 2010. Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data. Remote Sensing, [online] 2(4), pp.1035–1056. https://doi.org/10.3390/rs2041035

Courault, D., Hossard, L., Demarez, V., Dechatre, H., Irfan, K., Baghdadi, N., Flamain, F. and Ruget, F., 2021. STICS crop model and Sentinel-2 images for monitoring rice growth and yield in the Camargue region. Agronomy for Sustainable Development, [online] 41(4). https://doi.org/10.1007/s13593-021-00697-w

Deines, J.M., Patel, R., Liang, S.-Z., Dado, W. and Lobell, D.B., 2021. A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt. Remote Sensing of Environment, [online] 253. https://doi.org/10.1016/j.rse.2020.112174

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. and Lim, W.M., 2021. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, [online] 133, pp.285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Donthu, N., Kumar, S. and Pattnaik, D., 2020. Forty-five years of Journal of Business Research: A bibliometric analysis. Journal of Business Research, [online] 109, pp.1–14. https://doi.org/10.1016/j.jbusres.2019.10.039.

van Eck, N.J. and Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, [online] 84(2), pp.523–538. https://doi.org/10.1007/s11192-009-0146-3

van Eck, N.J. and Waltman, L., 2014. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. Journal of Informetrics, [online] 8(4), pp.802–823. https://doi.org/10.1016/j.joi.2014.07.006

Faqe Ibrahim, G.R., Rasul, A. and Abdullah, H., 2023. Sentinel?2 accurately estimated wheat yield in a semi-arid region compared with Landsat 8. International Journal of Remote Sensing, [online] 44(13), pp.4115–4136. https://doi.org/10.1080/01431161.2023.2232542

French, A.N., Jacob, F., Anderson, M.C., Kustas, W.P., Timmermans, W., Gieske, A., Su, Z., Su, H., McCabe, M.F., Li, F., Prueger, J. and Brunsell, N., 2005. Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment, [online] 99(1–2), pp.55–65. https://doi.org/10.1016/j.rse.2005.05.015

Gao, F., Anderson, M.C., Zhang, X., Yang, Z., Alfieri, J.G., Kustas, W.P., Mueller, R., Johnson, D.M. and Prueger, J.H., 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, [online] 188, pp.9–25. https://doi.org/10.1016/j.rse.2016.11.004

Gao, F. and Zhang, X., 2021. Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. Journal of Remote Sensing (United States), [online] 2021. https://doi.org/10.34133/2021/8379391

Gomarasca, M.A., Tornato, A., Spizzichino, D., Valentini, E., Taramelli, A., Satalino, G., Vincini, M., Boschetti, M., Colombo, R., Rossi, L., Mondino, E.B., Perotti, L., Alberto, W. and Villa, F., 2019. Sentinel for applications in agriculture. In: Ray S.S., Navalgund R., and Justice C., eds. Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. - ISPRS Arch. [online] International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. International Society for Photogrammetry and Remote Sensing. pp.91–98. https://doi.org/10.5194/isprs-archives-XLII-3-W6-91-2019

Immitzer, M., Vuolo, F. and Atzberger, C., 2016. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, [online] 8(3), p.166. https://doi.org/10.3390/rs8030166

Kaplan, G., Fine, L., Lukyanov, V., Malachy, N., Tanny, J. and Rozenstein, O., 2023. Using Sentinel-1 and Sentinel-2 imagery for estimating cotton crop coefficient, height, and Leaf Area Index. Agricultural Water Management, [online] 276. https://doi.org/10.1016/j.agwat.2022.108056

Kaur, R., Tiwari, R.K., Maini, R. and Singh, S., 2023. A Framework for Crop Yield Estimation and Change Detection Using Image Fusion of Microwave and Optical Satellite Dataset. Quaternary, [online] 6(2). https://doi.org/10.3390/quat6020028

Lakmal, D., Kugathasan, K., Nanayakkara, V., Jayasena, S., Perera, A.S. and Fernando, L., 2019. Brown planthopper damage detection using remote sensing and machine learning. In: Wani M.A., Khoshgoftaar T.M., Wang D., Wang H., and Seliya N., eds. Proc. - IEEE Int. Conf. Mach. Learn. Appl., ICMLA. [online] Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019. Institute of Electrical and Electronics Engineers Inc. pp.97–104. https://doi.org/10.1109/ICMLA.2019.00024

Lambert, M.-J., Traoré, P.C.S., Blaes, X., Baret, P. and Defourny, P., 2018. Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt. Remote Sensing of Environment, [online] 216, pp.647–657. https://doi.org/10.1016/j.rse.2018.06.036

Moral-Muñoz, J.A., Herrera-Viedma, E., Santisteban-Espejo, A. and Cobo, M.J., 2020. Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la información, [online] 29(1). https://doi.org/10.3145/epi.2020.ene.03

Muhuri, P.K., Shukla, A.K. and Abraham, A., 2019. Industry 4.0: A bibliometric analysis and detailed overview. Engineering Applications of Artificial Intelligence, [online] 78, pp.218–235. https://doi.org/10.1016/j.engappai.2018.11.007

Noyons, E. c. m., Moed, H. f. and Luwel, M., 1999. Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. Journal of the American Society for Information Science, [online] 50(2), pp.115–131. https://doi.org/10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.0.CO;2-J

Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L. and Mouazen, A.M., 2016. Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture, [online] 121, pp.57–65. https://doi.org/10.1016/j.compag.2015.11.018

Prasad, A.K., Chai, L., Singh, R.P. and Kafatos, M., 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, [online] 8(1), pp.26–33. https://doi.org/10.1016/j.jag.2005.06.002

Ren, T., Xu, H., Cai, X., Yu, S. and Qi, J., 2022. Smallholder Crop Type Mapping and Rotation Monitoring in Mountainous Areas with Sentinel-1/2 Imagery. Remote Sensing, [online] 14(3). https://doi.org/10.3390/rs14030566

Sagan, V., Maimaitijiang, M., Sidike, P., Maimaitiyiming, M., Erkbol, H., Hartling, S., Peterson, K.T., Peterson, J., Burken, J. and Fritschi, F., 2019. Uav/satellite multiscale data fusion for crop monitoring and early stress detection. In: Vosselman G., Oude Elberink S.J., and Yang M.Y., eds. Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. - ISPRS Arch. [online] International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. International Society for Photogrammetry and Remote Sensing. pp.715–722. https://doi.org/10.5194/isprs-archives-XLII-2-W13-715-2019

Sakamoto, T., Gitelson, A.A., Nguy-Robertson, A.L., Arkebauer, T.J., Wardlow, B.D., Suyker, A.E., Verma, S.B. and Shibayama, M., 2012. An alternative method using digital cameras for continuous monitoring of crop status. Agricultural and Forest Meteorology, [online] 154–155, p.113. https://doi.org/10.1016/j.agrformet.2011.10.014

Santana, L.S., Ferraz, G.A.E.S., Teodoro, A.J.D.S., Santana, M.S., Rossi, G. and Palchetti, E., 2021. Advances in Precision Coffee Growing Research: A Bibliometric Review. Agronomy, [online] 11(8), p.1557. https://doi.org/10.3390/agronomy11081557

Semeraro, T., Mastroleo, G., Pomes, A., Luvisi, A., Gissi, E. and Aretano, R., 2019. Modelling fuzzy combination of remote sensing vegetation index for durum wheat crop analysis. Computers and Electronics in Agriculture, [online] 156, pp.684–692. https://doi.org/10.1016/j.compag.2018.12.027

Shao, Y., Fan, X., Liu, H., Xiao, J., Ross, S., Brisco, B., Brown, R. and Staples, G., 2001. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sensing of Environment, [online] 76(3), pp.310–325. https://doi.org/10.1016/S0034-4257(00)00212-1

Shao, Z., Cai, J., Fu, P., Hu, L. and Liu, T., 2019. Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product. Remote Sensing of Environment, [online] 235. https://doi.org/10.1016/j.rse.2019.111425

Shi, J., Wang, C., Wang, J., Xi, X., Yang, X. and Ding, X., 2022. Study on the LAI and FPAR inversion of maize from airborne LiDAR and hyperspectral data. International Journal of Remote Sensing, [online] 43(13), pp.4793–4809. https://doi.org/10.1080/01431161.2022.2121187

Sozzi, M., Cantalamessa, S., Cogato, A., Kayad, A. and Marinello, F., 2022. Automatic Bunch Detection in White Grape Varieties Using YOLOv3, YOLOv4, and YOLOv5 Deep Learning Algorithms. Agronomy, [online] 12(2). https://doi.org/10.3390/agronomy12020319

Suarez, L.A., Robson, A., McPhee, J., O’Halloran, J. and van Sprang, C., 2020. Accuracy of carrot yield forecasting using proximal hyperspectral and satellite multispectral data. Precision Agriculture, [online] 21(6), pp.1304–1326. https://doi.org/10.1007/s11119-020-09722-6

Terliksiz, A.S. and Altýlar, D.T., 2019. Use Of Deep Neural Networks For Crop Yield Prediction: A Case Study Of Soybean Yield in Lauderdale County, Alabama, USA. In: 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). [online] 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). pp.1–4. https://doi.org/10.1109/Agro-Geoinformatics.2019.8820257

Unganai, L.S. and Kogan, F.N., 1998. Drought monitoring and corn yield estimation in southern Africa from AVHRR data. Remote Sensing of Environment, [online] 63(3), pp.219–232. https://doi.org/10.1016/S0034-4257(97)00132-6

Vallentin, C., Harfenmeister, K., Itzerott, S., Kleinschmit, B., Conrad, C. and Spengler, D., 2022. Suitability of satellite remote sensing data for yield estimation in northeast Germany. Precision Agriculture, [online] 23(1), pp.52–82. https://doi.org/10.1007/s11119-021-09827-6

Verma, S. and Gustafsson, A., 2020. Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. Journal of Business Research, [online] 118, pp.253–261. https://doi.org/10.1016/j.jbusres.2020.06.057

Waleed, M., Mubeen, M., Ahmad, A., Habib-ur-Rahman, M., Amin, A., Farid, H.U., Hussain, S., Ali, M., Qaisrani, S.A., Nasim, W., Javeed, H.M.R., Masood, N., Aziz, T., Mansour, F. and EL Sabagh, A., 2022. Evaluating the efficiency of coarser to finer resolution multispectral satellites in mapping paddy rice fields using GEE implementation. Scientific Reports, [online] 12(1). https://doi.org/10.1038/s41598-022-17454-y

Wang, J., Dai, Q., Shang, J., Jin, X., Sun, Q., Zhou, G. and Dai, Q., 2019. Field-scale rice yield estimation using sentinel-1A synthetic aperture radar (SAR) data in coastal saline region of Jiangsu Province, China. Remote Sensing, [online] 11(19). https://doi.org/10.3390/rs11192274

Wang, M., Wang, J., Cui, Y., Liu, J. and Chen, L., 2022. Agricultural Field Boundary Delineation with Satellite Image Segmentation for High-Resolution Crop Mapping: A Case Study of Rice Paddy. Agronomy, [online] 12(10). https://doi.org/10.3390/agronomy12102342

Wang, N., Xue, J., Peng, J., Biswas, A., He, Y. and Shi, Z., 2020. Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: A case study from southern xinjiang, china. Remote Sensing, [online] 12(24), pp.1–21. https://doi.org/10.3390/rs12244118

Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X. and Song, J., 2016. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, [online] 54(9), pp.5301–5318. https://doi.org/10.1109/TGRS.2016.2560522

Yang, C. and Anderson, G.L., 2000. Mapping grain sorghum yield variability using airborne digital videography. Precision Agriculture, [online] 2(1), pp.7–23. https://doi.org/10.1023/A:1009928431735

Yang, Q., Shi, L., Han, J., Zha, Y. and Zhu, P., 2019. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Research, [online] 235, pp.142–153. https://doi.org/10.1016/j.fcr.2019.02.022

Yli-Heikkila, M., Wittke, S., Luotamo, M., Puttonen, E., Sulkava, M., Pellikka, P., Heiskanen, J. and Klami, A., 2022. Scalable Crop Yield Prediction with Sentinel-2 Time Series and Temporal Convolutional Network. Remote Sensing, [online] 14(17). https://doi.org/10.3390/rs14174193

Yue, J., Yang, G., Li, C., Li, Z., Wang, Y., Feng, H. and Xu, B., 2017. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing, [online] 9(7). https://doi.org/10.3390/rs9070708

Zhang, H., Zhang, Y., Liu, K., Lan, S., Gao, T. and Li, M., 2023. Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms. Computers and Electronics in Agriculture, [online] 213. https://doi.org/10.1016/j.compag.2023.108250

Zhang, P.-P., Zhou, X.-X., Wang, Z.-X., Mao, W., Li, W.-X., Yun, F., Guo, W.-S. and Tan, C.-W., 2020. Using HJ-CCD image and PLS algorithm to estimate the yield of field-grown winter wheat. Scientific Reports, [online] 10(1). https://doi.org/10.1038/s41598-020-62125-5

Zhou, X., Wang, P., Tansey, K., Zhang, S., Li, H. and Tian, H., 2020. Reconstruction of time series leaf area index for improving wheat yield estimates at field scales by fusion of Sentinel-2, -3 and MODIS imagery. Computers and Electronics in Agriculture, [online] 177. https://doi.org/10.1016/j.compag.2020.105692

Zhou, X., Zheng, H.B., Xu, X.Q., He, J.Y., Ge, X.K., Yao, X., Cheng, T., Zhu, Y., Cao, W.X. and Tian, Y.C., 2017. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, [online] 130, pp.246–255. https://doi.org/10.1016/j.isprsjprs.2017.05.003

Zhu, L., Liu, X., Wang, Z. and Tian, L., 2023. High-precision sugarcane yield prediction by integrating 10-m Sentinel-1 VOD and Sentinel-2 GRVI indexes. European Journal of Agronomy, [online] 149. https://doi.org/10.1016/j.eja.2023.126889




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.56132

DOI: http://dx.doi.org/10.56369/tsaes.5613



Copyright (c) 2025 Irene Gutierrez Mora, Aleida Selene Hernández Cázares, Juan Valente Hidalgo Contreras, Jose Luis López Ayala, Joel Velasco Velasco

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.