MICROBIAL CONSORTIUM OF YEASTS AND LACTIC ACID BACTERIA AS BIOLOGICAL CONTROL AGENTS FOR POWDERY MILDEW AND DOWNY MILDEW UNDER FIELD CONDITIONS

Hanna Cáceres Yparraguirre, Lucero Esthefany Bendezú Huamán, José Luis Santos Baldiño, Elio Javier Huamán Flores

Abstract


Background. Agriculture needs strategies to control pests and diseases that affect it biological control agents are a sustainable alternative for their adoption and diffusion in this important sector. Objectives. This research was carried out with the objective of determining the activity of the microbial consortium formed by yeasts and lactic acid bacteria as biological control agents to minimize the damage caused by the phytopathogens Erysiphe necator and Plasmopara viticola in grapevines grown under field conditions in the Ica Valley. Methodology. The microbial consortium consisted of two strains of Saccharomyces cerevisiae and Hanseniaspora opuntiae yeasts and two strains of lactic acid bacteria, Lactobacillus brevis and Lactococcus lactis, whose consortium growth capacity was measured in the laboratory. The incidence and severity of the microbial consortium for the control of the two phytopathogens was evaluated in two vine varieties cultivated under field conditions, in the phenological stage of cluster closure and in formation plants. Results. Biological control agents as a preventive treatment in Torontel grapes, in the phenological state of fruit set, controlled the appearance of E. necator. In bunches of Autumn Crips grapes, the 10 L dose of the microbial consortium was equal to the L. lecanii treatment for the curative control of E. necator and in forming plants of the Autumn Crips variety, the 1 L dose of the microbial consortium was better than the treatment chemical for the control of P. viticola. Implications. Agriculture is an important sector in the Peruvian economy; however, it is dependent on chemical phytosanitary inputs that have economic, environmental and social effects for its sustainability.

Keywords


Saccharomyces cerevisiae; Hanseniaspora opuntiae; Lactobacillus brevis; Lactococcus lactis, biopesticides; biological control.

Full Text:

PDF

References


Abdel-Rahim, I.R. and Abo-Elyousr, K.A.M., 2017. Using of endophytic Saccharomycopsis fibuligera and thyme oil for management of gray mold rot of guava fruits. Biological Control, 110, pp.124–131. https://doi.org/10.1016/j.biocontrol.2017.04.014

Abouloifa, H., Rokni, Y., Bellaouchi, R., Ghabbour, N., Karboune, S., Brasca, M., Sallah, R.B., Chihib, N.E., Saalaoui, E. and Asehraou, A., 2020. Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics and antimicrobial proteins, 12, pp.683-696. https://doi.org/10.1007/s12602-019-09543-8

Agrawal, T. and Kotasthane, A.S., 2012. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. SpringerPlus, 1(1), pp.73. https://doi.org/10.1186/2193-1801-1-73

Ahmed, M.F.A., 2018. Evaluation of some biocontrol agents to control Thompson Seedless grapevine powdery mildew disease. Egyptian Journal of Biological Pest Control, 28(1), pp.93. https://doi.org/10.1186/s41938-018-0098-0

Al-Malkey, M.K., Ismeeal, M.C., Al-Hur, F.J.A., Mohammed, S.W. and Nayyef, H.J., 2017. Antimicrobial effect of probiotic Lactobacillus spp. on Pseudomonas aeruginosa. Journal of Contemporary Medical Sciences, 3(10), pp. 218-223. https://doi.org/10.22317/jcms.v3i10.169

Al-Shammari, R.H. and Majeed, H.Z., 2016. Efficiency of Lactic Acid Bacteria as biological control agents against some Fungi. Al-Mustansiriyah Journal of Science, 27(2), pp.35-40. [pdf] Disponible en: http://iasj.net/iasj/article/114359 [Consultado 10 Enero 2023].

Bartkiene, E., Ruzauskas, M., Bartkevics, V., Pugajeva, I., Zavistanaviciute, P., Starkute, V., Zokaityte, E., Lele, V., Dauksiene, A. and Grashorn M., et. al., 2020. Study of the antibiotic residues in poultry meat in some of the EU countries and selection of the best compositions of lactic acid bacteria and essential oils against Salmonella enterica. Poultry Science, 99(8), pp.4065-4076. https://doi.org/10.1016/j.psj.2020.05.002

Belkar, Y.K and Gade, R.M., 2012. Compatibility of fluorescent Pseudomonas with beneficial microorganisms. Journal of Plant Disease Sciences, 7(2), pp. 269-270.

Berkett, L. and Cromwell, M., 2019. Oídio de la Vid (Powdery Mildew of Grapes) [Online]. Disponible en: [Consultado 10 enero 2023].

Bulit, J. and Lafon, R., 1978. Powdery mildew of the vine: The Powdery Mildews. New York: Academic Press.

Cáceres, H., Siguas-Guerrero, J., Sotomayor-Parán, R., y Soto-Cordova, M., 2021. Actividad antifúngica de extractos vegetales contra Erysiphe necator en el cultivo de vid en condiciones de campo en la región Ica-Perú. Tropical and Subtropical Agroecosytems, 24(46), pp.1-12. https://doi.org/10.56369/tsaes.3481

Campbell, P., Bendek, C., Torres, R., Donoso, A. and Latorre, B.A., 2007. The risk assessment index in grape powdery mildew control decisions and the effect of temperature and humidity on conidial germination of Erysiphe necator. Spanish Journal of Agricultural Research, 4, pp.522-532. [pdf] Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=2486896 [Consultado 10 Enero 2023].

Carroll, J.E., and Wilcox, W.F., 2003. Effect of humidity on the development of grapevine powdery mildew. Phytopathology, 93(9), pp.1137-1144. https://doi.org/10.1094/PHYTO.2003.93.9.1137

Chen, P.H., Chen, R.Y. and Chou, J.Y., 2018. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Microbiology, 46(1), pp.33–46. https://doi.org/10.1080/12298093.2018.1454013

Chen, X., Wang, Y., Gao, Y., Gao, T. and Zhang, D., 2019. Inhibitory abilities of Bacillus isolates and their culture filtrates against the gray mold caused by Botrytis cinerea on postharvest fruit. The Plant Pathology Journal, 35(5), pp.425-436. https://doi.org/10.5423/PPJ.OA.03.2019.0064

Chinazor, N., Oladele C., Olufunke, A. and Temitope, S., 2019. Antagonistic activity of Lactic Acid Bacteria bioactive molecules against fungi isolated from onion (Allium cepa). EC Microbiology, 15, pp.318-327.

Dalié, D.K.D., Deschamps, A.M. and Richard-Forget, F., 2010. Lactic acid bacteria–Potential for control of mould growth and mycotoxins: A review. Food Control, 21(4), pp.370-380. https://doi.org/10.1016/j.foodcont.2009.07.011

De Miccolis Angelini, R.M., Raguseo, C., Rotolo, C., Gerin, D., Faretra, F. and Pollastro, S., 2022. The Mycovirome in a Worldwide Collection of the Brown Rot Fungus Monilinia fructicola. Journal of Fungi, 8(5), pp.481. https://doi.org/10.3390/jof8050481

Di Francesco, A. and Mari, M., 2014. Use of biocontrol agents in combination with physical and chemical treatments: efficacy assessment. Stewart Postharvest Review, 1(2). https://doi.org/10.2212/spr.2014.1.2

Di Francesco, A., Ugolini, L., D'Aquino, S., Pagnotta, E. and Mari, M., 2017. Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: Insights on competition for nutrients and space. International journal of Food Microbiology, 248, pp.32-38. https://doi.org/10.1016/j.ijfoodmicro.2017.02.007

El peruano, 2024. Por tercer año consecutivo, Perú bate récord histórico el 2023 en exportaciones. [Online]. Disponible en: [Consultado 10 marzo 2024].

Farag, A.R., 2022. Effect of bud load and fruiting unit length of the Autumn Crisp grape variety on growth, yield, and fruit quality. Alexandria Journal of Agricultural Sciences, 67(3), pp.182-192. https://doi.org/10.21608/alexja.2022.165806.1026

Ferreira-Saab, M., Formey, D., Torres, M., Aragon, W. and Padilla E., et. al., 2018. Compounds Released by the biocontrol Yeast Hanseniaspora opuntiae protect plants against Corynespora cassiicola and Botrytis cinerea. Frontiers in Microbiology, 9, pp.e01596. https://doi.org/103389/fmicb.2018.01596

Gadoury, D.M., Seem, R. C., Wilcox, W.F., Henick-Kling, T., Conterno, L., Day, A. and Ficke, A., 2007. Effects of diffuse colonization of grape berries by Uncinula necator on bunch rots, berry microflora, and juice and wine quality. Phytopathology, 97(10), pp.1356-1365. https://doi.org/710.1094/PHYTO-97-10-1356

Gajbhiye, M. and Kapadnis, B., 2018. Bio-efficiency of antifungal lactic acid bacterial isolates for pomegranate fruit rot management. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, pp.1477-1488. https://doi.org/10.1007/s40011-017-0891-7

Gajbhiye, M.H., Bankar, A.V. and Kapadnis, B.P., 2023. Lactic Acid Bacteria in the Management of Oily Spot Disease of Pomegranate. Current Microbiology, 80(1), pp.19. https://doi.org/10.1007/s00284-022-03113-y

Gao, Z., Zhang, B., Liu, H., Han, J. and Zhang, Y., 2017. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, pp.27–39. https://Doi:10.1016/j.biocontrol.2016.11.007

Gerez, C.L., Torres, M.J., De Valdez, G.F. and Rollán, G., 2013. Control of spoilage fungi by lactic acid bacteria. Biological Control, 64(3), pp.231-237. https://doi.org/10.1016/j.biocontrol.2012.10.009

Gessler, C., Pertot, I. and Perazzolli, M., 2011. Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterrenea, 50(1), pp.3–44.

Ghose, T.K., 1987. Measurement of cellulase activities. Pure Applied Chemistry, 59, pp.257-268. https://doi.org/10.1351/pac198759020257

Giobbe, S., Marceddu, S. and Scherm, B., et al., 2007. The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Research, 7(8), pp.1389–1398. https://doi.org/10.1111/j.1567-1364.2007.00301.x

Google (s.f.). Vista satelital de Google Maps del Fundo La Caravedo, de la empresa Don Luis y de la empresa San Fruits en el departamento y provincia de Ica-Perú]. Recuperado el 2 de enero del 2024.

Hatoum, R., Labrie, S. and Fliss, I., 2012. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, pp.421. https://doi.org/10.3389/fmicb.2012.00421

Hasan, S., Gupta, G., Anand, S., Chaturvedi, A. and Kaur, H., 2013. Biopotential of microbial antagonists against soilborne fungal plant pathogens. International Journal of Agriculture and Food Science Technology, 4(2), pp.37-39.

Hatoum, R., Labrie, S., and Fliss, I., 2012. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, pp.421. https://doi.org/10.3389/fmicb.2012.00421

Hazir, S., Shapiro-Ilan, D.I., Bock, C.H. and Leite, L.G., 2017. Trans-cinnamic acid and Xenorhabdus szentirmaii metabolites synergize the potency of some commercial fungicides. Journal of invertebrate Pathology, 145, pp.1-8. https://doi.org/10.1016/j.jip.2017.03.007

Horsfall, J.G. and Heuberger, J.W., 1942. Measuring magnitude of a defoliation disease in tomatoes. Phytopathology, 32, pp.226-232.

Instituto Nacional de Estadística e Informática., 2024. Producción de uva aumentó 27,6% en noviembre 2023 [Online]. Disponible en: [Consultado 10 marzo 2024].

Instituto de Investigaciones Agropecuarias., 2016. Oídio de la vid (Anamorfo. Oidium tuckeri Berk. Teleomorfo. Uncinula necator (Schwein.) Burril) [Online]. Disponible en: http://web.inia.cl/sanidadvegetal/2016/11/08/oidio-de-la-vid-anamorfo-oidium-tuckeri-berk-teleomorfo-uncinula-necator-schwein-burril/#:~:text=El%20o%C3%ADdio%20de%20la%20vid,producci%C3%B3n%20de%20uva%20de%20mesa [Consultado 09 enero 2023].

Ionita, A., Moscovici, M., Popa, C., Vamanu, A., Popa, O. and Dinu, L., 1997. Screning of yeast and fungal strains for lipolytic potencial and determination of some biochemical properties of microbial lipases. Journal of Molecular Catalysis B: Enzimatic, 3, pp. 147-151. https://doi.org/10.1016/S1381-1177(96)00044-6

Jess, S., Kildea, S., Moody, A., Rennick, G., Murchie, A.K. and Cooke, L.R., 2014. European Union policy on pesticides: implications for agriculture in Ireland. Pest Management Science, 70(11), pp.1646-1654. https://doi.org/10.1002/ps.3801

Jiménez-Reyes, M.F., Carrasco, H., Olea, A. F. and Silva-Moreno, E., 2019. Natural compounds: A sustainable alternative to the phytopathogens control. Journal of the Chilean Chemical Society, 64(2), pp. 4459–4465. https://doi.org/10.4067/S0717-97072019000204459

Kamel-Madbouly, A., Abo-Elyousr, K.A.M. and Mohamed-Ismail, I., 2020. Biocontrol of Monilinia fructigena, causal agent of brown rot of apple fruit, by using endophytic yeasts. Biological Control, 144, pp.e104239. https://doi.org/10.1016/j.biocontrol.2020.104239

Kandler, O. and Weiss, N., 1986. Genus Lactobacillus. In Bergey’s Manual of Systematic Bacteriology. Bacterias ácido-lácticastimore: Williams and Wilkins.

Kedar, S., Arun-Vashistht, M., Prashanth, A., Parveen, N., Chakraborty, S. and Sindhu, S., 2018. Isolation, partial purification, biochemical characterization and detergent compatibility of alkaline protease produced by Bacillus subtilis, Alcaligenes faecalis and Pseudomonas aeruginosa obtained from seawater samples. Journal of Genetic Engineering and Biotechnology, 16(1), pp.39–46. https://doi.org/10.1016/j.jgeb.2017.10.001

Kumar, D., Kumar, L., Nagar, S., Raina, C., Parshad, R. and Kumar, V., 2012. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Archives of Applied Science Research, 4(4), pp.1763-1770.

Kurtzman, C.P., Fell, J.W., Boekhout, T. and Robert, V., 2011. Methods for isolation, phenotypic characterization and maintenance of Yeasts. The Yeasts, 5, pp.87–110. https://doi.org/10.1016/B978-0-444-52149-1.00007-0

Lamont, J.R., Wilkins, O., Bywater-Ekegärd, M. and Smith, D.L., 2017. From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biology and Biochemistry, 111, pp.1-9. https://doi.org/10.1016/j.soilbio.2017.03.015

Liu, J., Sui, Y., Wisniewski, M., Droby, S. and Liu, Y., 2013. Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), pp.153-160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004

Liu, Z., Du, S., Ren, Y., and Liu Y., 2017. Biocontrol ability of killer yeasts (Saccharomyces cerevisiae) isolated from wine against Colletotrichum gloeosporioides on grape. Journal of Basic Microbiology, 58(1), pp.60-67. https://doi.org/10.1002/jobm.201700264

Markellou, E., Kapaxidi, E., Karamaouna, F., Samara, M., Kyriakopoulou, K., Anastasiadou, P., Vavoulidou, E., Meidanis, M., Machera, K. and Mandoulaki, A., et. al., 2022. Evaluation of plant protection efficacy in field conditions and side effects of Lysobacter capsici AZ78, a biocontrol agent of Plasmopara viticola. Biocontrol Science and Technology, 32(8), pp.930-951. https://doi.org/10.1080/09583157.2022.2064431

Massi, F., Torriani, S.F., Borghi, L. and Toffolatti, S.L., 2021. Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms, 9(1), pp.119. https://doi.org/10.3390/microorganisms9010119

Milli, A., Cecconi, D., Bortesi, L., Persi, A., Rinalducci, S., Zamboni, A., Zocatelli, G., Lovato, A., Zolla, L. and Polverari, A., 2012. Proteomic analysis of the compatible interaction between Vitis vinifera and Plasmopara viticola. Journal of Proteomics, 75(4), pp.1284–1302. https://doi.org/10.1016/j.jprot.2011.11.006

Mohd-Azhar, S.H. and Abdulla, R., 2018. Bioethanol production from galactose by immobilized wild-type Saccharomyces cerevisiae. Biocatalysis and Agricultural Biotechnology, 14, pp.457-465. https://doi.org/10.1016/j.bcab.2018.04.013

Nashwa, S.M.A. and Abo-Elyousr, K.A.M., 2012. Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. Plant Protection Science, 48(2), pp.74–79. https://doi.org/10.17221/14/2011-pps

Naz, R., Nosheen, A., Yasmin, H., Bano, A. and Keyani, R., 2018. Botanical-chemical formulations enhanced yield and protection against Bipolaris sorokiniana in wheat by inducing the expression of pathogenesis- related proteins. PLoS ONE, 13(4), pp. 1–22. https://doi.org/10.1371/journal.pone.0196194

Oro, L., Ferliziani, E., Ciani, M. and Romanazzi, G., 2014. Biocontrol of postharvest brown rot of sweet cherries by Saccharomyces cerevisiae Disva 599, Metschnikowia pulcherrima Disva 267 and Wickerhamomyces anomalus Disva 2 strains. Postharvest Biology and Technology, 96(1), pp.64-68. https://doi.org/10.1016/j.postharvbio.2014.05.011

Oztekin, S. y Karbancioglu-Guler, F. 2024. Reclutamiento de levaduras antagonistas aisladas de uva para el biomanejo sostenible de Botrytis cinerea en uvas. Seguridad Alimentaria y Energética, 13(1), pp.1-17. https://doi.org/10.1002/fes3.528

Parafati, L., Vitale, A., Restuccia, C. and Cirvilleri, G., 2017. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Food Microbiology, 63, pp.191-198. https://doi.org/10.1016/j.fm.2016.11.021

Parafati, L., Vitale, A., Restuccia, C. and Cirvilleri, G., 2016. The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum causal agents of postharvest decay of mandarin fruit. Food Microbiology, 58, pp.87-94. https://doi.org/10.1016/j.fm.2016.03.014

Pearson, R.C. and Gartel, W., 1985. Occurrence of hyphae of Uncinula necator in buds of grapevine. Plant Disease, 69(2), pp.149-151. https://doi.org/10.1094/PD-69-149

Qiu, W., Feechan, A. and Dry, I., 2015. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research, 2, pp.15020. https://doi.org/10.1038/hortres.2015.20

Raman, J., Kim, J.S., Choi, K.R., Eun, H., Yang, D., Ko, Y.J. and Kim, S.J., 2022. Application of lactic acid bacteria (LAB) in sustainable agriculture: Advantages and limitations. International Journal of Molecular Sciences, 23(14), pp.e7784. https://doi.org/10.3390/ijms23147784

Ren, D., Stenlokke, J., de la Cruz, C., Bergmark, L., Sorensen, S. and Burmolle, M., 2013. High-throughput screening of multisecies biofilm formation and quantitative PCR-Based assessment of individual species proportions, useful for exploring interespecific bacterial interacitions. Microbacterias ácido-lácticas Ecology, 68(1), pp.146-154. https://Doi:10.1007/s00248-013-0315-z

Sathe, S.J., Nawani, N.N., Dhakephalkar, P.K. and Kapadnis, B.P., 2007. Antifungal lactic acid bacteria with potential to prolong shelf?life of fresh vegetables. Journal of Applied Microbiology, 103(6), pp.2622-2628. https://doi.org/10.1111/j.1365-2672.2007.03525.x

Schnürer, J. and Magnusson, J., 2005. Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology, 16(1-3), pp. 70-78. https://doi.org/10.1016/j.tifs.2004.02.014

Sosa-Zuniga, V., Martínez-Barradas, V., Espinoza, C., Tighe-Neira, R., Valenzuela, Á.V., Inostroza-Blancheteau, C. and Arce-Johnson, P., 2022. Characterization of physiological and antioxidant responses in Run1Ren1 Vitis vinifera plants during Erysiphe necator attack. Frontiers in Plant Science. 13, pp.964732. https://doi.org/10.3389/fpls.2022.964732

Spadaro, D. and Gullino, M.L., 2004. State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2), pp.185-194. https://doi.org/10.1016/S0168-1605(03)00380-5

Teather, R., Wood, P., 1982. Use of congo red – polysaccharide interaction in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43(4), pp.777-780. https://doi.org/10.1128/aem.43.4.777-780.1982

Toffolatti, S.L., De Lorenzis, G., Costa, A., Maddalena, G., Passera, A., Bonza, M. C., Pindo, M., Stefani, E., Cestaro, A. and Casati, P., et al., 2018. Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Scientific Reports, 8, pp. e12523. https://doi.org/10.1038/s41598-018-30413-w

Toffolatti, S.L., De Lorenzis, G., Brilli, M., Moser, M., Shariati, V., Tavakol, E., Maddalena, G., Passera, A., Casati, P. and Pindo, M., et al., 2020. Novel aspects on the interaction between grapevine and Plasmopara viticola: Dual-rna-seq analysis highlights gene expression dynamics in the pathogen and the plant during the battle for infection. Genes, 11(3), pp.261. https://doi.org/10.3390/genes11030261

Trias-Mansilla, R., Bañeras-Vives, L., Montesinos-Seguí, E. and Badosa-Romañó, E., 2008. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 11, pp.231-236. https://doi.org/10.2436/20.1501.01.66

Tsioka, A., Psilioti, K., Poulaki, E., Papoutsis, G., Tjamos, G. y Gkizi, D., 2024. Estrategias de biocontrol contra Botrytis cinerea en viticultura: evaluación de la eficacia y el modo de acción de cepas de levadura enológica seleccionadas, Letters in Applied Microbiology, 77(3) ovae026, https://doi.org/10.1093/lambio/ovae026

Wang, X., Glawe, D.A., Kramer, E., Weller, D. and Okubara, P.A., 2018. Biological control of Botrytis cinerea: interactions with native vineyard yeasts from Washington State. Phytopathology, 108(6), pp.691-701. https://doi.org/10.1094/PHYTO-09-17-0306-R

Wheeler, B.E.J., 1969. An introduction to plant disease. New York: John Wiley & Sons Ltd.

Zebboudj, N., Yezli, W., Hamini-Kadar, N. and Kihal, M., 2020. Antifungal activity of lactic acid bacteria against Fusarium species responsible for tomato crown and root rots. Environmental and Experimental Biology, 18, pp.7-13. https://doi.org/10.22364/eeb.18.02

Zaferanloo, B., Quang, T.D., Daumoo, S., Ghorbani, M.M., Mahon, P.J. and Palombo, E.A., 2014. Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant. World Journal of Microbiology and Biotechnology, 30(6), pp.1755–1762. https://Doi:10.1007/s11274-014-1598-z

Zhang, P., Zhu, Y., Ma, D., Xu, W., Zhou, J., Yan, H., Yang, L. and Yin, J., 2019. Screening, identification, and optimization of fermentation conditions of an antagonistic endophyte to wheat head blight. Agronomy, 9(9), pp.476. https://doi.org/10.3390/agronomy9090476

Zhou, Y., Zhang, L. and Zeng, K., 2016. Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biological Control, 96, pp.39-47. https://doi.org/10.1016/j.biocontrol.2016.02.001




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.55150

DOI: http://dx.doi.org/10.56369/tsaes.5515



Copyright (c) 2024 Hanna Cáceres Yparraguirre, Lucero Esthefany Bendezú Huamán, José Luis Santos Baldiño, Elio Javier Huamán Flores

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.