TRENDS AND THEMES IN AGROECOSYSTEMS MULTIFUNCTIONALITY EVALUATION: A BIBLIOMETRIC ANALYSIS

Idalia Zaragoza-Hernández, José Luis Romo-Lozano, Eduardo Valdés-Velarde, Daniel Vega-Martínez, Rufo Sánchez-Hernández

Abstract


Background: Agroecosystems provide a wide range of goods and services to society, whose complexity varies depending on the context in which they develop. These characteristics represent a challenge in their evaluation; however, understanding their functioning and identifying areas for improvement is crucial. In this regard, it is essential to consider advances in scientific research on the evaluation of these systems to properly guide future work in this field. Objectives: To identify scientific publications, their origins, citation frequency, and recurrent terms in the evaluation of agroecosystem multifunctionality through a review of articles registered in the Scopus and Web of Science databases, and to analyze the main thematic areas by creating bibliometric maps with the VOSviewer software. Methodology: A review of scientific articles addressing the evaluation of agroecosystem multifunctionality was performed. The initial search resulted in 302 manuscripts, which were reduced to 65 articles in English and one in Spanish after a screening process. This set of publications was systematized and analyzed using Excel and the Bibliometrix application to address the first objective. Additionally, the bibliometric technique of term co-occurrence was applied using VOSviewer to delineate thematic groups, whose characteristics were reviewed using Excel. Main Findings: The results reveal a significant increase in the publication of articles related to the topic of interest in the past seven years, with 73% of the articles published during this period. At the country level, China, Spain, France, the Netherlands, Germany, Belgium, India, and Portugal account for 64% of the study sites, with a clear predominance of work in China. The three main thematic groups in the research are: 1) Multidimensional evaluation of agroecosystems; 2) Evaluation of agroecosystems multifunctionality based on their biodiversity; 3) Evaluation of soil multifunctionality in agroecosystems. Implications: The accumulated experiences in this field offer diverse perspectives that should be considered when applying any methodology. A trend observed is the increasingly comprehensive nature of studies, which incorporate indicators from various dimensions and emphasize the importance of addressing agroecosystem multifunctionality holistically. Conclusion: The number of studies on this topic is increasing, with different approaches and multidisciplinary work, recognizing the complexity and importance of agroecosystems in the global sustainability agenda.

Keywords


agricultura multifuncional; servicios ecosistémicos; metodologías de evaluación; revisión de literatura

Full Text:

PDF

References


Angelini, M.E., Heuvelink, G.B.M. and Lagacherie, P., 2023. A multivariate approach for mapping a soil quality index and its uncertainty in southern France. European Journal of Soil Science, 74, p.e13345. https://doi.org/10.1111/ejss.13345

Arriaza, M. and Gómez-Limón, J.A., 2011. Valoración social del carácter multifuncional de la agricultura andaluza. Informacion Tecnica Economica Agraria, 107(2), pp.102–125.

Balzan, M. V., Caruana, J. and Zammit, A., 2018. Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state. Land Use Policy, [online] 75, pp.711–725. https://doi.org/10.1016/j.landusepol.2017.08.025

Biswas, B., Chakraborty, D., Timsina, J., Bhowmick, U.R., Dhara, P.K., Ghosh (Lkn), D.K., Sarkar, A., Mondal, M., Adhikary, S., Kanthal, S., Patra, K., Sarkar, S., Parsad, R. and Ray, B.R., 2022. Agroforestry offers multiple ecosystem services in degraded lateritic soils. Journal of Cleaner Production, [online] 365, p.132768. https://doi.org/10.1016/j.jclepro.2022.132768

Boyack, K.W. and Klavans, R., 2010. Co-Citation Analysis, Bibliographic Coupling, and Direct Citation: Which Citation Approach Represents the Research Front Most Accurately? Journal of the American Society for Information Science and technology, 61(12), pp.2389–2404.

Chen, L., Redmile-Gordon, M., Li, J., Zhang, J., Xin, X., Zhang, C., Ma, D. and Zhou, Y., 2019. Linking cropland ecosystem services to microbiome taxonomic composition and functional composition in a sandy loam soil with 28-year organic and inorganic fertilizer regimes. Applied Soil Ecology, [online] 139, pp.1–9. https://doi.org/10.1016/j.apsoil.2019.03.011

Crossman, N.D. and Bryan, B.A., 2009. Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality. Ecological Economics, [online] 68(3), pp.654–668. https://doi.org/10.1016/j.ecolecon.2008.05.003

Daelemans, R., Hulsmans, E., Fockaert, L., Vranken, L., De Bruyn, L. and Honnay, O., 2023. Agroecosystem multifunctionality of apple orchards in relation to agricultural management and landscape context. Ecological Indicators, [online] 154, p.110496. https://doi.org/10.1016/j.ecolind.2023.110496

Eldridge, D.J., Delgado-baquerizo, M., Quero, J.L., Ochoa, V., Gozalo, B., García-palacios, P., Escolar, C., García-Gómez, M., Prina, A., Bowker, M.A., Bran, D.E., Castro, I., Cea, A., Derak, M., Espinosa, C.I., Florentino, A., Gaitán, J.J., Gatica, G., Gómez-González, S., Ghiloufi, W., Gutierrez, J.R., Gusmán-montalván, E., Hernández, R.M., Hughes, F.M., Muiño, W., Monerris, J., Ospina, A., Ramírez, D.A., Ribas-Fernández, Y.A., Romão, R.L., Torres-Díaz, C., Koen, T.B. and Maestre, F.T., 2020. Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology, 57, pp.424–435. https://doi.org/10.1111/1365-2664.13540

Fagioli, F.F., Rocchi, L., Paolotti, L., S?owi?ski, R. and Boggia, A., 2017. From the farm to the agri-food system: A multiple criteria framework to evaluate extended multi-functional value. Ecological Indicators, 79, pp.91–102. https://doi.org/10.1016/J.ECOLIND.2017.04.009

FAO, 2022. El estado mundial de la agricultura y la alimentación 2022. Aprovechar la automatización de la agricultura para transformar los sistemas agroalimentarios. Rome:FAO. [online] Available at: https://doi.org/10.4060/cb9479es

Finney, D.M. and Kaye, J.P., 2017. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. Journal of Applied Ecology, 54(2), pp.509–517. https://doi.org/10.1111/1365-2664.12765

Fleskens, L., Duarte, F. and Eicher, I., 2009. A conceptual framework for the assessment of multiple functions of agro-ecosystems: A case study of Trás-os-Montes olive groves. Journal of Rural Studies, 25(1), pp.141–155. https://doi.org/10.1016/J.JRURSTUD.2008.08.003

Gamfeldt, L., Hillebrand, H. and Jonsson, P.R., 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89(5), pp.1223–1231. https://doi.org/10.1890/06-2091.1

Garland, G., Banerjee, S., Edlinger, A., Miranda Oliveira, E., Herzog, C., Wittwer, R., Philippot, L., Maestre, F.T. and van der Heijden, M.G.A., 2021. A closer look at the functions behind ecosystem multifunctionality: A review. Journal of Ecology, [online] 109, pp.600–613. https://doi.org/10.1111/1365-2745.13511

Hodbod, J., Barreteau, O., Allen, C. and Magda, D., 2016. Managing adaptively for multifunctionality in agricultural systems. Journal of Environmental Management, [online] 183, pp.379–388. https://doi.org/10.1016/j.jenvman.2016.05.064

Hölting, L., Beckmann, M., Volk, M. and Cord, A.F., 2019. Multifunctionality assessments – More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecological Indicators, [online] 103, pp.226–235. https://doi.org/10.1016/j.ecolind.2019.04.009

Hölting, L., Komossa, F., Filyushkina, A., Gastinger, M.-M., Verburg, P.H., Beckmann, M., Volk, M., Cord, A.F., Verburg, P.H., Beckmann, M., Volk, M. and Including, A.F.C., 2020. Including stakeholders’ perspectives on ecosystem services in multifunctionality assessments. Ecosystems and People, [online] 16(1), pp.354–368. https://doi.org/10.1080/26395916.2020.1833986

Jiang, G., Wang, M., Qu, Y., Zhou, D. and Ma, W., 2020. Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework. Land Use Policy, [online] 99, p.104982. https://doi.org/10.1016/j.landusepol.2020.104982

Jing, X., Prager, C.M., Borer, E.T., Gotelli, N.J., Gruner, D.S., He, J.-S., Kirkman, K., MacDougall, A.S., McCulley, R.L., Prober, S.M., Seabloom, E.W., Stevens, C.J., Classen, A.T. and Sanders, N.J., 2021. Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial ? -diversity. Ecosphere, 12(7), p.e03644. https://doi.org/10.1002/ecs2.3644

Leroux, L., Clermont-Dauphin, C., Ndienor, M., Jourdan, C., Roupsard, O. and Seghieri, J., 2022. A spatialized assessment of ecosystem service relationships in a multifunctional agroforestry landscape of Senegal. Science of the Total Environment, [online] 853, p.158707. https://doi.org/10.1016/j.scitotenv.2022.158707

Li, X., Qiao, L., Huang, Y., Li, D., Xu, M., Ge, T., Meersmans, J. and Zhang, W., 2023. Manuring improves soil health by sustaining multifunction at relatively high levels in subtropical area. Agriculture, Ecosystems and Environment, [online] 353, p.108539. https://doi.org/10.1016/j.agee.2023.108539

Lin, H. and Yun, H., 2023. Spatiotemporal Dynamics of Ecosystem Services Driven by Human Modification over the Past Seven Decades: A Case Study of Sihu Agricultural Watershed, China. Land, 12, p.577. https://doi.org/10.3390/land12030577

Lovell, S.T., Mendez, V.E., Erickson, D.L., Nathan, C. and DeSantis, S., 2010. Extent, pattern, and multifunctionality of treed habitats on farms in Vermont, USA. Agroforestry Systems, [online] 80, pp.153–171. https://doi.org/10.1007/s10457-010-9328-5

Marques-Perez, I. and Segura, B., 2018. Integrating social preferences analysis for multifunctional peri-urban farming in planning. An application by multi-criteria analysis techniques and stakeholders. Agroecology and Sustainable Food Systems, [online] 42(9), pp.1029–1057. https://doi.org/10.1080/21683565.2018.1468379

Marsboom, C., Vrebos, D., Staes, J. and Meire, P., 2018. Using dimension reduction PCA to identify ecosystem service bundles. Ecological Indicators, 87, pp.209–260. https://doi.org/10.1016/J.ECOLIND.2017.10.049

Mastrangelo, M.E., Weyland, F., Villarino, S.H., Barral, M.P., Nahuelhual, L. and Laterra, P., 2014. Concepts and methods for landscape multifunctionality and a unifying framework based on ecosystem services. Landscape Ecology, 29, pp.345–358. https://doi.org/10.1007/s10980-013-9959-9

Moon, W., 2015. Conceptualising multifunctional agriculture from a global perspective: Implications for governing agricultural trade in the post-Doha Round era. Land Use Policy, 49, pp.252–263. https://doi.org/10.1016/J.LANDUSEPOL.2015.07.026

Nazaries, L., Pal Singh, B., Rani Sarker, J., Fang, Y., Klein, M. and Singh, B.K., 2021. The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agriculture, Ecosystems and Environment, [online] 307, p.107206. https://doi.org/10.1016/j.agee.2020.107206

Parra-López, C., Calatrava-Requena, J. and De-Haro-Giménez, T., 2008. A systemic comparative assessment of the multifunctional performance of alternative olive systems in Spain within an AHP-extended framework. Ecological Economics, 64(4), pp.820–834. https://doi.org/10.1016/j.ecolecon.2007.05.004

Peralta González, M.J., Frías Guzmán, M. and Gregorio Chaviano, O., 2015. Criterios, clasificaciones y tendencias de los indicadores bibliométricos en la evaluación de la ciencia. Revista Cubana de Información en Ciencias de la Salud, [online] 26(3), pp.290–309. Available at: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2307-21132015000300009&lng=es&nrm=iso&tlng=es [Accessed 20 September 2023]

Perianes-Rodriguez, A., Waltman, L. and van Eck, N.J., 2016. Constructing bibliometric networks: A comparison betweenfull and fractional counting. Journal of Informetrics, 10, pp.1178–1195. https://doi.org/https://doi.org/10.1016/j.joi.2016.10.006

Pinto-Correia, T., Guiomar, N., Ferraz-de-Oliveira, M.I., Sales-Baptista, E., Rabaça, J., Godinho, C., Ribeiro, N., Sá Sousa, P., Santos, P., Santos-Silva, C., Simões, M.P., Belo, A.D.F., Catarino, L., Costa, P., Fonseca, E., Godinho, S., Azeda, C., Almeida, M., Gomes, L., Lopes de Castro, J., Louro, R., Silvestre, M. and Vaz, M., 2018. Progress in Identifying High Nature Value Montados: Impacts of Grazing on Hardwood Rangeland Biodiversity. Rangeland Ecology and Management, [online] 71(5), pp.612–625. https://doi.org/10.1016/j.rama.2018.01.004

Pranckut?, R., 2021. Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications, 9, p.12. https://doi.org/10.3390/publications9010012

Rac, I., Erjavec, K. and Erjavec, E., 2023. Agriculture and environment: friends or foes? Conceptualising agri-environmental discourses under the European Union’s Common Agricultural Policy. Agriculture and Human Values, [online] 41, pp.147–166. https://doi.org/10.1007/s10460-023-10474-y

Ren, K., 2021. Following Rural Functions to Classify Rural Sites: An Application in Jixi, Anhui Province, China. Land, 10, p.418. https://doi.org/https://doi.org/10.3390/land10040418

Richter, F., Jan, P., El Benni, N., Lüscher, A., Buchmann, N. and Klaus, V.H., 2021. A guide to assess and value ecosystem services of grasslands. Ecosystem Services, [online] 52, p.101376. https://doi.org/10.1016/j.ecoser.2021.101376

Rodríguez Sousa, A.A., Parra-lópez, C., Sayadi-Gmada, S., Barandica, J.M. and Rescia, A.J., 2020. A multifunctional assessment of integrated and ecological farming in olive agroecosystems in southwestern Spain using the Analytic Hierarchy Process. Ecological Economics, [online] 173, p.106658. https://doi.org/10.1016/j.ecolecon.2020.106658

Rodríguez-Loinaz, G., Alday, J.G. and Onaindia, M., 2015. Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. Journal of Environmental Management, [online] 147, pp.152–163. https://doi.org/10.1016/j.jenvman.2014.09.001

Romero, F., Hilfiker, S., Edlinger, A., Held, A., Hartman, K., Labouyrie, M. and van der Heijden, M.G.A., 2023. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Science of the Total Environment, 885, p.163683. https://doi.org/10.1016/j.scitotenv.2023.163683

Salatino, M., 2022. Los circuitos lingüísticos de la publicación científica latinoamericana. Tempo Social, 34(3), pp.253–273. https://doi.org/10.11606/0103-2070.ts.2022.201928

Stokes, A., Bocquého, G., Carrere, P., Conde Salazar, R., Deconchat, M., Garcia, L., Gardarin, A., Gary, C., Gaucherel, C., Gueye, M., Hedde, M., Lescourret, F., Mao, Z., Quérou, N., Rudi, G., Salles, J.-M., Soubeyran, R., Subervie, J., Vialatte, A., Vinatier, F. and Thomas, M., 2023. Services provided by multifunctional agroecosystems: Questions, obstacles and solutions. Ecological Engineering, [online] 191, p.106949. https://doi.org/10.1016/j.ecoleng.2023.106949

Stürck, J. and Verburg, P.H., 2017. Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landscape Ecology, 32, pp.481–500. https://doi.org/10.1007/s10980-016-0459-6

Tanács, E., Vári, Á., Bede-Fazekas, Á., Báldi, A., Csákvári, E., Endrédi, A., Fabók, V., Kisné Fodor, L., Kiss, M., Koncz, P., Kovács-Hostyánszki, A., Mészáros, J., Pásztor, L., Rezneki, R., Standovár, T., Zsembery, Z. and Török, K., 2023. Finding the Green Grass in the Haystack? Integrated National Assessment of Ecosystem Services and Condition in Hungary, in Support of Conservation and Planning. Sustainability, 15, p.8489. https://doi.org/10.3390/su15118489

Taniguchi, T., Akaji, Y., Yamato, M., Kusakabe, R., Goomaral, A., Undarmaa, J. and Yamanaka, N., 2022. Dominance of arbuscular mycorrhizal fungi is key for Mongolian steppe management under livestock grazing, as indicated by ecosystem multifunctionality. Ecological Indicators, [online] 136, p.108686. https://doi.org/10.1016/j.ecolind.2022.108686

Tekalign, M., Van Meerbeek, K., Aerts, R., Norgrove, L., Poesen, J., Nyssen, J. and Muys, B., 2017. Effects of biodiversity loss and restoration scenarios on tree-related ecosystem services. International Journal of Biodiversity Science, Ecosystem Services and Management, [online] 13(1), pp.434–443. https://doi.org/10.1080/21513732.2017.1399929

Torralba, M., Oteros-Rozas, E., Moreno, G. and Plieninger, T., 2018. Exploring the Role of Management in the Coproduction of Ecosystem Services from Spanish Wooded Rangelands. Rangeland Ecology and Management, [online] 71(5), pp.549–559. https://doi.org/10.1016/j.rama.2017.09.001

Tran, D.X., Pearson, D., Palmer, A., Gray, D., Lowry, J. and Dominati, E.J., 2022. A comprehensive spatially-explicit analysis of agricultural landscape multifunctionality using a New Zealand hill country farm case study. Agricultural Systems, [online] 203, p.103494. https://doi.org/10.1016/j.agsy.2022.103494

Valujeva, K., O’Sullivan, L., Gutzler, C., Fealy, R. and Schulte, R.P.O., 2016. The challenge of managing soil functions at multiple scales: An optimisation study of the synergistic and antagonistic trade-offs between soil functions in Ireland. Land Use Policy, [online] 58, pp.335–347. https://doi.org/10.1016/j.landusepol.2016.07.028

van der Plas, F., Allan, E., Fischer, M., Alt, F., Arndt, H., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm, S., Hölzel, N., Klaus, V.H., Kleinebecker, T., Morris, K., Oelmann, Y., Prati, D., Renner, S.C., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Solly, E.F., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W. and Manning, P., 2019. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. Journal of Applied Ecology, 56, pp.168–179. https://doi.org/10.1111/1365-2664.13260

van Eck, N.J. and Waltman, L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, [online] 84(2), pp.523–538. https://doi.org/10.1007/s11192-009-0146-3

Vazquez, C., de Goede, R.G.M., Rutgers, M., de Koeijer, T.J. and Creamer, R.E., 2021. Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off. European Journal of Soil Science, 72, pp.1624–1639. https://doi.org/10.1111/ejss.13019

Velmurugan, A., Swarnam, T.P., Jaisankar, I., Swain, S. and Subramani, T., 2022. Vegetation–soil–microbial diversity influences ecosystem multifunctionality across different tropical coastal ecosystem types. Tropical Ecology, [online] 63, pp.273–285. https://doi.org/10.1007/s42965-021-00209-7

Waltman, L. and van Eck, N.J., 2012. A New Methodology for Constructing a Publication-Level Classification System of Science. Journal of the American Society for Information Science and Technology, 63(12), pp.2378–2392. https://doi.org/10.1002/asi.22748

Willemen, L., Hein, L., van Mensvoort, M.E.F. and Verburg, P.H., 2010. Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecological Indicators, 10(1), pp.62–73. https://doi.org/10.1016/J.ECOLIND.2009.02.015

Willemen, L., Verburg, P.H., Hein, L. and van Mensvoort, M.E.F., 2008. Spatial characterization of landscape functions. Landscape and Urban Planning, 88(1), pp.34–43. https://doi.org/10.1016/j.landurbplan.2008.08.004

Yang, R., Yang, Z., Yang, S., Chen, L., Xin, J., Xu, L., Zhang, X., Zhai, B., Wang, Z., Zheng, W. and Li, Z., 2023. Nitrogen inhibitors improve soil ecosystem multifunctionality by enhancing soil quality and alleviating microbial nitrogen limitation. Science of the Total Environment, [online] 880, p.163238. https://doi.org/10.1016/j.scitotenv.2023.163238

Zhao, R., Li, J., Wu, K. and Kang, L., 2021. Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection. Land, 10, p.605. https://doi.org/10.3390/land10060605

Zinchuk, T., Kutsmus, N., Prokopchuk, O., Lagodiienko, V., Nych, T. and Naumko, Y., 2021. Multifunctionality of Agriculture in the Reality of Globalization Crisis. Ecological Engineering & Environmental Technology, 22(1), pp.51–59. https://doi.org/10.12912/27197050/132094

Zwetsloot, M.J., Bongiorno, G., Barel, J.M., di Lonardo, D.P. and Creamer, R.E., 2022. A flexible selection tool for the inclusion of soil biology methods in the assessment of soil multifunctionality. Soil Biology and Biochemistry, [online] 166, p.108514. https://doi.org/10.1016/j.soilbio.2021.108514




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.55077

DOI: http://dx.doi.org/10.56369/tsaes.5507



Copyright (c) 2024 Idalia Zaragoza-Hernández, José Luis Romo-Lozano, Eduardo Valdés-Velarde, Daniel Vega-Martínez, Rufo Sánchez-Hernández

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.