THE FERMENTED LIQUID BIOFERTILIZER USE DERIVED FROM SLAUGHTERHOUSE WASTE IMPROVES MAIZE CROP YIELD

Tomas Daniel Samaniego Vivanco, Wendy E. Pérez, Sphyros Lastra-Paúcar, Ezio Verme-Mustiga, Richard Solórzano-Acosta

Abstract


Background: The exclusive application of synthetic or organic fertilizers continues to generate controversy. Evidence indicates that the integrated use of these practices can enhance crop nutrition, reduce the reliance on synthetic fertilizers, and mitigate their polluting impact on soil quality.  Objective: To evaluate organic and mineral fertilization doses used on hard yellow maize Megahybrid 619 INIA growth and yield using a liquid biofertilizer derived from slaughterhouse waste fermentation. Methodology: Using a randomized complete block experimental design with a 4x2 factorial arrangement, four doses of NPK chemical fertilization and biofertilizer application were tested. Mineral fertilization was divided into two parts, while slaughterhouse waste fermented biofertilizer applications were carried out via drench during vegetative growth and between the tasselling and grain filling stages at a 50 L∙ha-1 product dose. Results: Liquid biofertilizer (K1) use positively impacted growth, with a comparable effect on height and leaf area applying fertilization medium dose (F2_K1). The lowest dose of chemical fertilization in combination with the biofertilizer (F1_K1) obtained a significantly higher maize harvest index (+14%) compared to complete fertilization (F3_K1). Implications: While the highest fertilization levels did not result in increased yields, it is plausible that under different conditions and with other maize hybrids, significant differences may be observed.  Conclusion: The application of liquid biofertilizer combined with a reduced dose of mineral fertilization results in a higher harvest index and a yield comparable to that achieved with full mineral fertilization in the hard yellow maize Megahybrid 619 INIA.

Keywords


sustainable agriculture; fertilization; soil; bioresource technology

Full Text:

PDF

References


Abbasi, M.K. and Yousra, M., 2012. Synergistic effects of biofertilizer with organic and chemical N sources in improving soil nutrient status and increasing growth and yield of wheat grown under greenhouse conditions. Plant Biosystems, 146, pp.181–189. https://doi.org/10.1080/11263504.2012.695296

Abdo, A.I., El-Sobky, E.S.E.A. and Zhang, J., 2022. Optimizing maize yields using growth stimulants under the strategy of replacing chemicals with biological fertilizers. Frontiers in Plant Science, 13, p. 1069624. https://doi.org/10.3389/fpls.2022.1069624

Adediran, J.A., Taiwo, L.B., Akande, M.O., Sobulo, R.A. and Idowu, O.J., 2005. Application of organic and inorganic fertilizer for sustainable maize and cowpea yields in Nigeria. Journal of Plant Nutrition, 27(7), pp.1163–1181. https://doi.org/10.1081/PLN-120038542

Aguirre Yato, G. and Alegre Orihuela, J., 2015. Uso de fuentes no convencionales de nitrógeno en la fertilización del maíz (Zea mays L.), en Cañete (Perú). I: Rendimiento y extracción de N, P y K. Ecología Aplicada, 14(2), pp.158-162.

Akpor, O., Otohinoyi, D.A., Olaolu, T.D. and Aderiye, J.B.I., 2014. Pollutants in wastewater effluents: Impacts and remediation processes. International Journal of Environmental Research and Earth Science, 3(3), pp.50–59.

Al?Suhaibani, N., Selim, M., Alderfasi, A. and El?hendawy, S., 2021. Integrated application of composted agricultural wastes, chemical fertilizers and biofertilizers as an avenue to promote growth, yield and quality of maize in an arid agro?ecosystem. Sustainability, 13, p. 7439. https://doi.org/10.3390/su13137439

Ayoola, O. and Makinde, E., 2009. Maize growth yield and soil nutrient changes with N-enriched organic fertilizers. African Journal of Food, Agriculture, Nutrition and Development, 9(1), pp.580–592. https://doi.org/10.4314/ajfand.v9i1.19214

Babaji, B.A., Yahaya, R.A., Mahadi, M.A., Jaliya, M.M., Ahmed, A., Sharifai, A.I., Kura, H.N., Arunah, U.L., Ibrahim, A. and Muhammad, A.A., 2014. Yield and yield attributes of extra-early maize (Zea mays L.) as affected by rates of NPK fertilizer succeeding chili pepper (Capsicum frutescens) supplied with different rates sheep manure. Agrivita, 36(1), pp.1–8. https://doi.org/10.17503/agrivita-2014-36-1-p001-008

Barreras-Urbina, C.G., Rodríguez-Félix, F., López-Ahumada, G.A., Burruel-Ibarra, S.E., Tapia-Hernández, J.A., Castro-Enríquez, D.D. and Rueda-Puente, E.O., 2018. Microparticles from wheat-gluten proteins soluble in ethanol by nanoprecipitation: Preparation, characterization, and their study as a prolonged-release fertilizer. International Journal of Polymer Science, 2018, p. 1042798. https://doi.org/10.1155/2018/1042798

Barreras-Urbina, C.G., Rodríguez-Félix, F., Cárdenas-López, J.L., Plascencia-Jatomea, M., Pérez-Tello, M., Ledesma-Osuna, A.I., Madera-Santana, T.J., Tapia-Hernández, J.A. and Castro-Enríquez, D.D., 2023. Effect of a Prolonged-Release System of Urea on Nitrogen Losses and Microbial Population Changes in Two Types of Agricultural Soil. ACS Omega, 8(45), pp.42319–42328. https://doi.org/10.1021/acsomega.3c04572

Barus, W.A., Utami, S. and Tanjung, D.Z., 2019. Growth and Production Response of Corn (Zea mays L.) by Bokashi of Cow Waste and Tempe Industrial Liquid Waste. Indonesian Journal of Agricultural Research, 2(2), pp.66–76. https://doi.org/10.32734/injar.v2i2.917

Boron, A.K. and Vissenberg, K., 2014. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. Plant Cell Reports, 33(5), pp.697–706. https://doi.org/10.1007/s00299-014-1591-x

Budiastuti, M.T.S., Purnomo, D., Pujiasmanto, B. and Setyaningrum, D., 2023. Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs. Agriculture 13, p. 309. https://doi.org/10.3390/agriculture13020309

Chávez-Távara, J.M. and Vásquez-Zorilla, R.I., 2017. Determinación de la composición física, química y bacteriológica de efluentes de residuos sólidos orgánicos del camal Municipal de Moyobamba, con la finalidad de uso sostenible local. (Tesis) Escuela Profesional de Ingeniería Sanitaria, Universidad Nacional de San Martin- Tarapoto, Perú.

Chinipardaz, F., Babaienejad, T., Gholami, A. and Barzegari, M., 2022. Grain yield and micronutrient concentrations of maize parental lines of new hybrid genotypes affected by the foliar application of micronutrients. Physiology and Molecular Biology of Plants, 28(2), pp.411–424. https://doi.org/10.1007/s12298-022-01160-0

Díaz-Chuquizuta, P., Hidalgo-Melendez, E., Cabrejo-Sánchez, C. and Valdés-Rodríguez, O.A., 2022. Respuesta del maíz (Zea mays L.) a la aplicación de abonos orgánicos líquidos. Chilean Journal of Agricultural & Animal Sciences, 38(2), pp.144–153. https://doi.org/10.29393/chjaa38-14rmpo40014

Enríquez-Espinoza, L. and Soto Huanca, R., 2017. Evaluación de la producción y composición química de humus de lombriz roja californiana (Eisenia Foétida) con el contenido ruminal en el camal Municipal de Huancavelica. (Tesis) Escuela Profesional de Zootecnia, Universidad Nacional de Huancavelica, Perú. Available at: http://repositorio.unh.edu.pe/handle/UNH/2755

Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K. and Prasanna, B.M., 2022. Global maize production, consumption and trade: trends and R&D implications. Food Security, [online] 14(5), pp.1295–1319. https://doi.org/10.1007/s12571-022-01288-7

Farfán, H. and Perales Angoma, A., 2021. Efecto de la fertilización orgánica mineral sobre la producción de maíz morado (Zea mays L.). Revista Científica Siglo XXI, 1(1), pp.97–106. https://doi.org/10.54943/rcsxxi.v1i1.14

Fauziah, L., Rahmawati, D., Ratnawati, T., Hanifah, S., Sa’Adah, S.Z. and Istiqomah, N., 2022. Study of the efficiency N, P, and K fertilizer application to increase yield of sweet corn on inceptisol. IOP Conference Series: Earth and Environmental Science, 1107, p.012033. https://doi.org/10.1088/1755-1315/1107/1/012033

Funes-Monzote, F., 2017. Integracio?n Agroecológica y Soberani?a Energe?tica. Agroecología, 12(1), pp.57–66.

García-Gonzales, E., Diaz-Chuquizuta, P., Hidalgo-Meléndez, E. y Aguirre-Gil, O.J., 2020. Respuesta del cultivo de maíz a concentraciones de estiércol bovino digerido en clima tropical húmedo. Manglar, 17(3), pp.203–208

Hütsch, B.W. and Schubert, S., 2017. Harvest Index of Maize (Zea mays L.): Are There Possibilities for Improvement? Advances in Agronomy, 146, pp.37–82. https://doi.org/10.1016/bs.agron.2017.07.004

Ion, V., Dicu, G., Dumbrav?, M., Temocico, G., Alecu, I.N., B??a, A.G. and State, D., 2015. Harvest index at maize in different growing conditions. Romanian Biotechnological Letters, 20(6), pp.10951–10960.

Iqbal, A., Amanullah, A. and Iqbal, M., 2015. Impact of potassium rates and their application time on dry matter partitioning, biomass and harvest index of maize (Zea mays L.) with and without cattle dung application. Emirates Journal of Food and Agriculture, 27(5), pp.447–453. https://doi.org/10.9755/ejfa.2015.04.042

Khosro, M. and Yousef, S., 2012. Bacterial Biofertilizers for Sustainable Crop Production: a Review. Journal of Agricultural and Bological Science, 7(5), pp.307–316.

Laekemariam, F. and Gidago, G., 2012. Response of Maize (Zea mays L.) to Integrated Fertilizer Application in Wolaita, South Ethiopia. Advances in Life Science and Technology, [online] 5, pp.21–30. Available at: https://core.ac.uk/download/pdf/234686762.pdf

Liu, W., Hou, P., Liu, G., Yang, Y., Guo, X., Ming, B., Xie, R., Wang, K., Liu, Y. and Li, S., 2020. Contribution of total dry matter and harvest index to maize grain yield—A multisource data analysis. Food and Energy Security, 9: 256. https://doi.org/10.1002/fes3.256

Maddonni, G.A. and Otegui, M.E., 2006. Intra-specific competition in maize: Contribution of extreme plant hierarchies to grain yield, grain yield components and kernel composition. Field Crops Research, 97(2–3), pp.155–166. https://doi.org/10.1016/j.fcr.2005.09.013

Mahmood, F., Imran Khan, Umair Ashraf, T.S., Hussain1, S., Shahid, M., Abid, M. and Ullah, S., 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. Journal of soil science and plant nutrition, [online] 17(1), pp.22–32. Available at: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017005000002&lng=en&nrm=iso&tlng=en

Maintang, Sudding, F., Asri, M. and Rauf, A.W., 2021. Application of liquid organic and inorganic fertilizer on growth and production of hybrid maize. IOP Conference Series: Earth and Environmental Science, 64, p. 012140. https://doi.org/10.1088/1755-1315/648/1/012140

Makinde, O.A. and Sonaiya, E.B., 2010. A simple technology for production of vegetable-carried blood or rumen fluid meals from abattoir wastes. Animal Feed Science and Technology, [online] 162(1–2), pp.12–19. https://doi.org/10.1016/j.anifeedsci.2010.08.011

Marschner, P., 2012. Marschner’s mineral nutrition of higher plants. Third Edition. Elsevier Ltd Adelaide-Australia. 672 p.

Muktamar, Z., Putri, D. and Setyowati, N., 2016. Reduction of synthetic fertilizer for sustainable agriculture: Influence of organic and nitrogen fertilizer combination on growth and yield of green mustard. International Journal on Advanced Science, Engineering and Information Technology, 6(3), pp.361–364. https://doi.org/10.18517/ijaseit.6.3.802

Muktamar, Z., Sinaga, D.P., Widiyono, H., Gusmara, H. and Mucitro, B.G., 2023. Performance of Sweet Corn and Increasing Soil Total Nitrogen after the Application of Vegetable Waste-Based Liquid Organic Fertilizer in Coastal Entisols. International Journal of Plant & Soil Science, 35(21), pp.221–231. https://doi.org/10.9734/ijpss/2023/v35i213968

Mulyati, Baharuddin, A.B. and Tejowulan, R.S., 2021. Improving Maize (Zea mays L.) growth and yield by the application of inorganic and organic fertilizers plus. IOP Conference Series: Earth and Environmental Science, 712: 012027. https://doi.org/10.1088/1755-1315/712/1/012027

Ning, P., Li, S., Yu, P., Zhang, Y. and Li, C., 2013. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Research, 144, pp.19–27. https://doi.org/10.1016/j.fcr.2013.01.020

Oyedeji, F.N., 2016. Analysis of the Effect of organic and inorganic fertilizer on growth performance and yield of maize. Stem Cell, 7(1), pp.4–9. https://doi.org/10.7537/marsscj07011602

Prakhar, M., Dawson, J. and Singh, V., 2021. Harvest index (HI) as influenced by total grain yield and biological yield in K-27 Variety of maize crop (Zea mays L.) under Varying Levels of Nitrogen and Plant Growth Regulators (PGR). International Journal of Current Microbiology and Applied Sciences, 10(4), pp.712–716. https://doi.org/10.20546/ijcmas.2021.1004.072

R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Roy, M., Das, R., Debsarcar, A., Kumar Sen, P. and Mukherjee, J., 2016. Conversion of rural abattoir wastes to an organic fertilizer and its application in the field cultivation of tomato in India. Renewable Agriculture and Food Systems, 31(4), pp.350–360. https://doi.org/10.1017/S1742170515000289

Roy, M., Karmakar, S., Debsarcar, A., Sen, P.K. and Mukherjee, J., 2013. Application of rural slaughterhouse waste as an organic fertilizer for pot cultivation of solanaceous vegetables in India. International Journal of Recycling of Organic Waste in Agriculture, 2, p. 6. https://doi.org/10.1186/2251-7715-2-6

Saleem, A., Zulfiqar, A., Saleem, M.Z., Ali, B., Saleem, M.H., Ali, S., Tufekci, E.D., Tufekci, A.R., Rahimi, M. and Mostafa, R.M., 2023. Alkaline and acidic soil constraints on iron accumulation by Rice cultivars in relation to several physio-biochemical parameters. BMC Plant Biology 23, 397. https://doi.org/10.1186/s12870-023-04400-x

Sara, D.S., Sofyan, E.T. and Joy, B., 2023. Application of Liquid Organic Fertilizer (LOF) From Vegetable Waste and NPK on the Growth and Results of Corn (Zea mays L.). International Journal of Life Science and Agriculture Research, 02(08), pp.230–234. https://doi.org/10.55677/ijlsar/v02i08y2023-05

Servicio Nacional de Meterología e Hidrología (SENAMHI), 2023. Datos Histórico. Consultado 28 diciembre del 2023. Disponible en http://www.senamhi.gob.pe/main_mapa.php?t=dHi

Setyowati, N., Chozin, M., Nadeak, Y.A., Hindarto, K.S. and Muktamar, Z., 2022. Sweet corn (Zea mays Saccharata Sturt L.) Growth and Yield Response to Tomato Extract Liquid Organic Fertilizer. American Journal of Multidisciplinary Research & Development, 4(03), pp.25–32.

Sharma, T., Dreyer, I. and Riedelsberger, J., 2013. The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Frontiers in Plant Science, 2013, p. 00224. https://doi.org/10.3389/fpls.2013.00224

Sukanteri, N.P., Yuniti, I.A.D., Suryana, I., Verawati, Y., Windnyana, I. and Suparyana, P.K., 2020. Utilization Of Biotechnology Of Beef Waste As An Input For Sustainable Agriculture Development In The Sweet Corn Commodity. Anternational Journal of Disaster Recovery and Business Continuity, 11(3), pp.2630–2640.

Sutharsan, S. and Rajendran, M., 2016. Influence of liquid organic fertilizer on growth and yield of maize (Zea mays L.). AGRIEAST: Journal of Agricultural Sciences, 9, pp.11-16. https://doi.org/10.4038/agrieast.v9i0.16

Syofia, I., Munar, A. and Sofyan, M., 2014. Effect of liquid organic fertilizer on growth and yield of two varieties of sweet corn. Jurnal Agrium, 18(3), pp.208–218.

Taiz, L. and Zeiger, E., 2010. Plant Physiology. 5a ed. Sunderland, MA. USA:Sinaver Associates. 782 p.

Tani, S.A.A., Elymaizar, Z. and Musnandar, E., 2021. The Modification of Beef Cattle’s Feces and Urine as the Source of Organic Fertilizer to Increase Sweet Corn’s Productivity ( Zea mays saccharata sturt ). Advances in Engineering Research, [online] 205(1), pp.66–70. https://doi.org/10.1016/S0167-8809(01)00166-9

Tapia-Hernández, J.A., Madera-Santana, T.J., Rodríguez-Félix, F. and Barreras-Urbina, C.G., 2022. Controlled and Prolonged Release Systems of Urea from Micro-and Nanomaterials as an Alternative for Developing a Sustainable Agriculture: A Review. Journal of Nanomaterials 2022, p. 5697803. https://doi.org/10.1155/2022/5697803

Tolera, A., Tamado, T. and Pant, ., L.M., 2005. Grain Yield and LER of Maize-climbing Bean Intercropping as Affected by Inorganic, Organic Fertilisers and Population Density in Western Oromiya, Ethiopia. Asian Journal of Plant Sciences, 4(5), pp.458-465. https://doi.org/10.3923/ajps.2005.458.465

Vala, Y.B. and Desai, C.K., 2021. Cow Urine: - A Blessed Gift of God to Agriculture. Just Agriculture, 1(10), pp.1–7.

Yetilmezsoy, K., Ilhan, F., Kiyan, E. and Bahramian, M., 2022. A comprehensive techno-economic analysis of income-generating sources on the conversion of real sheep slaughterhouse waste stream into valorized by-products. Journal of Environmental Management, [online] 306, p. 114464. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114464

Yu, X., Shi, P., Schrader, J. and Niklas, K.J., 2020. Nondestructive estimation of leaf area for 15 species of vines with different leaf shapes. American Journal of Botany, 107(11), pp.1481–1490. https://doi.org/10.1002/ajb2.1560

Zanin, L., Tomasi, N., Cesco, S., Varanini, Z. and Pinton, R., 2019. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science, 10, p. 675. https://doi.org/10.3389/fpls.2019.00675

Zhao, Y., Wang, P., Li, J., Chen, Y., Ying, X. and Liu, S., 2009. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. European Journal of Agronomy, 31(1), pp.36–42. https://doi.org/10.1016/j.eja.2009.03.001




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.54693

DOI: http://dx.doi.org/10.56369/tsaes.5469



Copyright (c) 2024 Tomas Daniel Samaniego Vivanco, Wendy E. Pérez, Sphyros Lastra-Paúcar, Richard Solórzano-Acosta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.