FINE ROOT PRODUCTION AND TURNOVER ALONG A FOREST SUCCESSION AFTER SLASH-AND-BURN AGRICULTURE

Deb Raj Aryal, Danilo Enrique Morales Ruiz, Daniel Molina Alvarado, José Apolonio Venegas Venegas, Fernando Casanova Lugo, Gilberto Villanueva Lopez

Abstract


Background. Fine root production and turnover are the fundamental processes of net primary productivity in forest ecosystems. Fine root production and turnover rates can vary with the successional gradients of the forest ecosystems created by land use changes. Objective. To evaluate the variations in fine root production and turnover along the successional gradients of tropical secondary forests and compare them with adjacent primary forests. Methodology. A total of 256 cylindrical ingrowth bags (of 8 cm diameter and 30 cm depth) were established in 16 forest stands representing four stages of succession. Four ingrowth bags from each stand were collected at an interval of about three months.  Live and dead fine roots (≤2 mm diameter) were separated, washed, oven-dried, and weighed. Results. There was no significant difference in annual fine root productivity between secondary forests and primary forests but the fine root turnover rates were higher in secondary forests than in primary forests. Fine root production rates varied from 1.9 to 2.8 Mg of dry biomass ha-1 yr-1 while fine root turnover over rates ranged from 1.1 to 1.5 yr-1. Fine root production was higher in the dry season compared to the wet season. Implications. The results on fine root dynamics can be useful in modeling below-ground mechanisms of carbon sequestration in forest ecosystems during succession. Conclusions. Fine root productivity did not vary with forest age but the relative turnover rates were higher in secondary forests than in primary forests. Tree basal area was a significant predictor of fine root production. 

Keywords


Fine root biomass; secondary forests; ingrowth bags; belowground carbon dynamics; Calakmul

Full Text:

PDF

References


Addo-Danso, S.D., Defrenne, C.E., McCormack, M.L., Ostonen, I., Addo-Danso, A., Foli, E.G., Borden, K.A., Isaac, M.E., Prescott, C.E., 2020. Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecology, 221, pp.1–13. https://doi.org/10.1007/s11258-019-00986-1

Aryal, D.R., De Jong, B.H., Gaona, S.O., Vega, J.M., Olguín, L.E., Cruz, S.L., 2022. Fine wood decomposition rates decline with the sge of tropical successional forests in Southern Mexico: Implications to ecosystem carbon storage. Ecosystems, 25, pp. 661–677. https://doi.org/10.1007/s10021-021-00678-w

Aryal, D.R., De Jong, B.H., Ochoa-Gaona, S., Esparza-Olguin, L., Mendoza-Vega, J., 2014. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agriculture Ecosystems Environment, 195, pp. 220–230. https://doi.org/10.1016/j.agee.2014.06.005

Aryal, D.R., De Jong, B.H., Ochoa-Gaona, S., Mendoza-Vega, J., Esparza-Olguin, L., 2015. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutrient Cycling in Agroecosystems, 103, pp. 45–60. https://doi.org/10.1007/s10705-015-9719-0.

Aryal, D.R., De Jong, B.H., Sánchez-Silva, S., Haas-Ek, A., Esparza-Olguin, L., Ochoa-Gaona, S., Ghimire, R., Morales-Ruiz, D.E., 2024. Biomass recovery along a tropical forest succession: Trends on tree diversity, wood traits and stand structure. Forest Ecology and Management, 555, pp. 121709. https://doi.org/10.1016/j.foreco.2024.121709

Aryal, D.R., De Jong, B.H.J., Mendoza-Vega, J., Ochoa-Gaona, S., Esparza-Olguín, L., 2017. Soil organic carbon stocks and soil respiration in tropical secondary forests in Southern Mexico. In: Global soil security. Progress in Soil Science. Springer, pp. 153–165. https://doi.org/10.1007/978-3-319-43394-3_14

Barbhuiya, A.R., Arunachalam, A., Pandey, H.N., Khan, M.L., Arunachalam, K., 2012. Fine root dynamics in undisturbed and disturbed stands of a tropical wet evergreen forest in northeast India. Tropical Ecology, 53, pp. 69–79.

Batista DRP-D, Estrada-Medina H, Gijón-Yescas GN, Álvarez-Rivera OO., 2021. Land covers analyses during slash and burn agriculture by using multispectral imagery obtained with unattended aerial vehicles (UAVs. Tropical and Subtropical Agroecosystems, 24, art. 21. http://dx.doi.org/10.56369/tsaes.3586

Bautista F, Palacio-Aponte G, Quintana P, Zinck JA., 2011. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology, 135, pp. 308–321. https://doi.org/10.1016/j.geomorph.2011.02.014.

Becknell, J.M., Vargas G, G., Pérez?Aviles, D., Medvigy, D., Powers, J.S., 2021. Above?ground net primary productivity in regenerating seasonally dry tropical forest: Contributions of rainfall, forest age and soil. Journal of Ecology, 109, pp. 3903–3915 https://doi.org/10.1111/1365-2745.13767

Bond-Lamberty B, Wang C, Gower ST., 2004. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology, 10, pp. 473–487. https://doi.org/10.1111/j.1529-8817.2003.0742.x

Brunner, I., Bakker, M.R., Björk, R.G., Hirano, Y., Lukac, M., Aranda, X., Børja, I., Eldhuset, T.D., Helmisaari, H.-S., Jourdan, C., 2013. Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant and Soil, 362, pp. 357–372 https://doi.org/10.1007/s11104-012-1313-5

Cairns MA, Brown S, Helmer EH, Baumgardner GA., 1997. Root biomass allocation in the world’s upland forests. Oecologia, 111, pp. 1–11. https://doi.org/10.1007/s004420050201.

Castellanos J, Jaramillo VJ, Sanford RL, Kauffman JB., 2001. Slash-and-burn effects on fine root biomass and productivity in a tropical dry forest ecosystem in Mexico. Forest Ecology and Management, 148, pp. 41–50. https://doi.org/10.1016/S0378-1127(00)00523-5

Chazdon RL., 2014. Second growth: The promise of tropical forest regeneration in an age of deforestation. University of Chicago Press. https://doi.org/10.7208/9780226118109

Chen X, Eamus D, Hutley LB., 2004. Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia. Journal of Tropical Ecology, 20, pp. 221–224. https://doi.org/10.1017/S0266467403001135

Cordeiro, A.L., Norby, R.J., Andersen, K.M., Valverde?Barrantes, O., Fuchslueger, L., Oblitas, E., Hartley, I.P., Iversen, C.M., Gonçalves, N.B., Takeshi, B., 2020. Fine-root dynamics vary with soil depth and precipitation in a lown-utrient tropical forest in the Central Amazonia. Plant-Environment Interactions, 1, pp. http://dx.doi.org/10.15486/ngt/1523508

Cusack DF, Turner BL., 2021. Fine root and soil organic carbon depth distributions are inversely related across fertility and rainfall gradients in lowland tropical forests. Ecosystems, 24, pp. 1075–1092. https://doi.org/10.1007/s10021-020-00569-6

Ding, Y., Leppälammi-Kujansuu, J., Salemaa, M., Schiestl-Aalto, P., Kulmala, L., Ukonmaanaho, L., Nöjd, P., Minkkinen, K., Makita, N., Železnik, P., 2021. Distinct patterns of below-and aboveground growth phenology and litter carbon inputs along a boreal site type gradient. Forest Ecology and Management, 489, pp. 119081. https://doi.org/10.1016/j.foreco.2021.119081

Falkowski, T.B., Chankin, A., Lehmann, J., Drinkwater, L.E., Diemont, S.A., Nigh, R., 2023. Socioecological effects of swidden management in traditional Maya agroforests in the Selva Lacandona of Chiapas, Mexico. Journal of Environmental Management, 341, pp. 118035. https://doi.org/10.1016/j.jenvman.2023.118035

Figueiredo Lugli, L., Fuchslueger, L., Vallicrosa, H., Van Langenhove, L., Ranits, C., Roc Fernandez Garberi, P., Verryckt, L., Grau, O., Bréchet, L., Peguero, G. and Llusia, J., 2024. Contrasting responses of fine root biomass and traits to large?scale nitrogen and phosphorus addition in tropical forests in the Guiana shield. Oikos, 2024, p. e10412. https://doi.org/10.1111/oik.10412

Finér L, Ohashi M, Noguchi K, Hirano Y., 2011a. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management, 262, pp. 2008–2023. https://doi.org/10.1016/j.foreco.2011.08.042

Finér L, Ohashi M, Noguchi K, Hirano Y., 2011b. Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management 261, pp. 265–277. https://doi.org/10.1016/j.foreco.2010.10.016

Freschet, G.T., Roumet, C., Comas, L.H., Weemstra, M., Bengough, A.G., Rewald, B., Bardgett, R.D., De Deyn, G.B., Johnson, D., Klimešová, J., 2021. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 232, pp. 1123–1158. https://doi.org/10.1111/nph.17072

García E., 1973. Modificaciones al Sistema de Clasificación Climática de Köppen. Instituto de Geografía, UNAM, México D.F. Modificaciones al sistema de clasificación climática de Köppen (para adapta... - Google Books.

García Gil G, Palacio Prieto JL, Ortiz Pérez MA., 2002. Reconocimiento geomorfológico e hidrográfico de la Reserva de la Biosfera Calakmul, México. Investigaciones Geográficas, 7–23. n48a2.pdf (scielo.org.mx)

Germon A, Laclau J-P, Robin A, Jourdan C., 2020. Tamm Review: Deep fine roots in forest ecosystems: Why dig deeper? Forest Ecology and Management, 466, pp. 118135. https://doi.org/10.1016/j.foreco.2020.118135

Gill RA, Jackson RB., 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, pp. 13–31. https://doi.org/10.1046/j.1469-8137.2000.00681.x

Girardin, C.A.J., Espejob, J.E.S., Doughty, C.E., Huasco, W.H., Metcalfe, D.B., Durand-Baca, L., Marthews, T.R., Aragao, L.E.O.C., Farfán-Rios, W., García-Cabrera, K., Halladay, K., Fisher, J.B., Galiano-Cabrera, D.F., Huaraca-Quispe, L.P., Alzamora-Taype, I., Eguiluz-Mora, L., Salinas-Revilla, N., Silman, M.R., Meir, P., Malhi, Y., 2013. Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology and Diversity, 7(1-2), pp. 107-123. https://doi.org/10.1080/17550874.2013.820222

Girardin, C.A.J., Malhi, Y., Aragao, L., Mamani, M., Huaraca Huasco, W., Durand, L., Feeley, K.J., Rapp, J., SILVA?ESPEJO, J., Silman, M., 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16, pp. 3176–3192. https://doi.org/10.1111/j.1365-2486.2010.02235.x

Hertel D, Strecker T, Müller-Haubold H, Leuschner C., 2013. Fine root biomass and dynamics in beech forests across a precipitation gradient – is optimal resource partitioning theory applicable to water-limited mature trees? Journal of Ecology, 101, pp. 1183–1200. https://doi.org/10.1111/1365-2745.12124

Hogan JA, Xu H, Baraloto C., 2023. Intraspecific trait variation and species turnover in successional tropical forests: assessing trait imputation for community-weighted means. Plant Ecology, 224, pp. 463–477. https://doi.org/10.6084/m9.figshare.7996328.v4

Huaraca Huasco, W., Riutta, T., Girardin, C.A., Hancco Pacha, F., Puma Vilca, B.L., Moore, S., Rifai, S.W., del Aguila Pasquel, J., Araujo Murakami, A., Freitag, R., 2021. Fine root dynamics across pantropical rainforest ecosystems. Global Change Biology, 27(15), pp. 3657-3680. https://doi.org/10.1111/gcb.15677

Jakovac, C.C., Meave, J.A., Bongers, F., Letcher, S.G., Dupuy, J.M., Piotto, D., Rozendaal, D.M., Peña-Claros, M., Craven, D., Santos, B.A., 2022. Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 8, p. eabn1767. https://doi.org/10.17026/dans-2c5-a7bc

Jha P, Mohapatra KP., 2010. Leaf litterfall, fine root production and turnover in four major tree species of the semi-arid region of India. Plant and Soil, 326, pp. 481–491. https://doi.org/10.1007/s11104-009-0027-9

Jourdan, C., Silva, E.V., Gonçalves, J.L.M., Ranger, J., Moreira, R.M., Laclau, J.-P., 2008. Fine root production and turnover in Brazilian Eucalyptus plantations under contrasting nitrogen fertilization regimes. Forest Ecology and Management, 256, pp. 396–404. https://doi.org/10.1016/j.foreco.2008.04.034

Kochsiek A, Tan S, Russo SE., 2013. Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecology, 214, pp. 869–882. https://doi.org/10.1007/s11258-013-0215-9

Lawrence D, Foster D., 2002. Changes in forest biomass, litter dynamics and soils following shifting cultivation in southern Mexico: an overview. Interciencia, 27, pp. 400–408. changes in forest biomass, litter dynamics and soils following shifting cultivation in southern mexico: an overview (scielo.org)

Lima TTS, Miranda IS, Vasconcelos SS., 2010. Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil. New Phytologist, 187, pp. 622–630. https://doi.org/10.1111/j.1469-8137.2010.03299.x

Luke McCormack M, Eissenstat DM, Prasad AM, Smithwick EAH., 2013. Regional scale patterns of fine root lifespan and turnover under current and future climate. Global Change Biology, 19, pp. 1697–1708. https://doi.org/10.1111/gcb.12163.

Ma, S., Yu, Q., Chen, G., Su, H., Tang, W., Sun, Y., Zhou, Z., Jiang, L., Zhu, J., Chen, L., 2022. Aboveground net primary productivity mediates the responses of soil respiration to nutrient additions in two tropical montane rainforests. Agriculture and Forest Meteorology, 327, pp. 109200. https://doi.org/10.1016/j.agrformet.2022.109200

Majdi, H., Pregitzer, K., Moren, A.-S., Nylund, J.-E., Ågren, G.I., 2005. Measuring fine root turnover in forest ecosystems. Plant and Soil, 276, pp. 1–8. https://doi.org/10.1007/s11104-005-3104-8

Marín-Spiotta E, Cusack DF, Ostertag R, Silver WL., 2008. Trends in above and belowground carbon with forest regrowth after agricultural abandonment in the neotropics. In: Post-Agricultural Succession in the Neotropics. Springer, pp. 22–72. https://doi.org/10.1007/978-0-387-33642-8_2

Martins, N.P., Fuchslueger, L., Fleischer, K., Andersen, K.M., Assis, R.L., Baccaro, F.B., Camargo, P.B., Cordeiro, A.L., Grandis, A., Hartley, I.P., 2021. Fine roots stimulate nutrient release during early stages of leaf litter decomposition in a Central Amazon rainforest. Plant and Soil, 469, pp. 287–303. https://doi.org/10.1007/s11104-021-05148-9

Mascaro, J., Asner, G.P., Dent, D.H., DeWalt, S.J., Denslow, J.S., 2012. Scale-dependence of aboveground carbon accumulation in secondary forests of Panama: A test of the intermediate peak hypothesis. Forest Ecology Management, 276, pp. 62–70. https://doi.org/10.1016/j.foreco.2012.03.032

Matamala, R., Gonzalez-Meler, M.A., Jastrow, J.D., Norby, R.J., Schlesinger, W.H., Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302, pp. 1385–1387. https://doi.org/10.1126/science.1089543

Metcalfe, D.B., Meir, P., Aragão, L.E.O., da Costa, A.C., Braga, A.P., Gonçalves, P.H., Junior, J. de A.S., de Almeida, S.S., Dawson, L.A., Malhi, Y., 2008. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 311, pp. 189–199. https://doi.org/10.1007/s11104-008-9670-9

Morales Ruiz, D.E., Aryal, D.R., Pinto Ruiz, R., Guevara Hernández, F., Casanova Lugo, F., Villanueva Lopez, G., 2021. Carbon contents and fine root production in tropical silvopastoral systems. Land Degradation and Development, 32, pp. 738–756. https://doi.org/10.1002/ldr.3761

Nadelhoffer KJ, Raich JW., 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73(4), pp. 1139–1147. https://doi.org/10.2307/1940664

Neill C., 1992. Comparison of soil coring and ingrowth methods for measuring belowground production. Ecology, 73(5), pp. 1918–1921. https://doi.org/10.2307/1940044

Neumann, M., Godbold, D.L., Hirano, Y. and Finér, L., 2020. Improving models of fine root carbon stocks and fluxes in European forests. Journal of Ecology, 108(2), pp.496-514. https://doi.org/10.1111/1365-2745.13328

Pandey R, Bargali SS, Bargali K, Pandey VC., 2023. Temporal variability in fine root dynamics in relation to tree girth size in sub?tropical sal (Shorea robusta) forests. Land Degradation and Development, 34, pp. 1522–1537. https://doi.org/10.1002/ldr.4550

Pérez-Salicrup D., 2004. Forest types and their implications. In: B.L. Turner II, J. Geoghegan and D.R. Foster Eds. Integrated Land-Change Science of Tropical Deforestation in Southern Yucatán, Final Frontiers. Oxford:Oxford University Press. pp. 63–80.

Poorter, L., Craven, D., Jakovac, C.C., van der Sande, M.T., Amissah, L., Bongers, F., Chazdon, R.L., Farrior, C.E., Kambach, S., Meave, J.A., 2021. Multidimensional tropical forest recovery. Science, 374, pp. 1370–1376. https://doi.org/10.1126/science.abh3629

Puglielli G, Laanisto L, Poorter H, Niinemets Ü., 2021. Global patterns of biomass allocation in woody species with different tolerances of shade and drought: evidence for multiple strategies. New Phytologist, 229, pp. 308–322. https://doi.org/10.1111/nph.16879

Riutta, T., Kho, L.K., Teh, Y.A., Ewers, R., Majalap, N., Malhi, Y., 2021. Major and persistent shifts in below?ground carbon dynamics and soil respiration following logging in tropical forests. Global Change Biology, 27, pp. 2225–2240. https://doi.org/10.1111/gcb.15522

Rzedowski J., 1981. The vegetation of Mexico. Editorial Limusa. http://cabidigitallibrary.org/doi/full/10.5555/19810673948

Sánchez-Silva, S., De Jong, B.H., Aryal, D.R., Huerta-Lwanga, E., Mendoza-Vega, J., 2018. Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. Journal of Tropical Ecology, 34, pp. 364–377. https://doi.org/10.1017/S0266467418000366

Sánchez-Silva, S., De Jong, B.H., Huerta-Lwanga, E., Mendoza-Vega, J., Morales-Ruiz, D.E., Aryal, D.R., 2022. Fine root biomass stocks but not the production and turnover rates vary with the age of tropical successional forests in Southern Mexico. Rhizosphere, 21, pp. 100474. https://doi.org/10.1016/j.rhisph.2022.100474

Shi, J., Deng, L., Gunina, A., Alharbi, S., Wang, K., Li, J., Liu, Y., Shangguan, Z. and Kuzyakov, Y., 2023. Carbon stabilization pathways in soil aggregates during long-term forest succession: Implications from ?13C signatures. Soil Biology and Biochemistry, 180, pp. 108988. https://doi.org/10.1016/j.soilbio.2023.108988

Sun, L., Hirano, T., Yazaki, T., Teramoto, M., Liang, N., 2020. Fine root dynamics and partitioning of root respiration into growth and maintenance components in cool temperate deciduous and evergreen forests. Plant and Soil, 446, pp. 471–486. https://doi.org/10.1007/s11104-019-04343-z

Titlyanova A, Shibareva S., 2022. Change in the net primary production and carbon stock recovery in fallow soils. Eurasian Journal of Soil Science, 55, pp. 501–510. https://doi.org/10.1134/S1064229322040135

Umaña, M.N., Cao, M., Lin, L., Swenson, N.G., Zhang, C., 2021. Trade?offs in above?and below?ground biomass allocation influencing seedling growth in a tropical forest. Journal of Ecology, 109, pp. 1184–1193. https://doi.org/10.1111/1365-2745.13543

Velasco-Murguía A, del Castillo RF, Rös M, Rivera-García R., 2021. Successional pathways of post-milpa fallows in Oaxaca, Mexico. Forest Ecology and Management, 500, pp. 119644. https://doi.org/10.1016/j.foreco.2021.119644

Weemstra, M., Kiorapostolou, N., van Ruijven, J., Mommer, L., de Vries, J., Sterck, F., 2020. The role of fine?root mass, specific root length and life span in tree performance: a whole?tree exploration. Functional Ecology, 34, pp. 575–585. https://doi.org/10.1111/1365-2435.13520

Xiang, H., Luo, X., Zhang, L., Hou, E., Li, J., Zhu, Q. and Wen, D., 2022. Forest succession accelerates soil carbon accumulation by increasing recalcitrant carbon stock in subtropical forest topsoils. Catena, 212, pp. 106030. https://doi.org/10.1016/j.catena.2022.106030

Xuluc-Tolosa, F.J., Vester, H.F.M., Ram?rez-Marcial, N., Castellanos-Albores, J., Lawrence, D., 2003. Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management, 174, pp. 401–412. https://doi.org/10.1016/S0378-1127(02)00059-2

Yang L, Wu S, Zhang L., 2010. Fine root biomass dynamics and carbon storage along a successional gradient in Changbai Mountains, China. Forestry: An International Journal of Forest Research, 83(4), pp. 379–387. https://doi.org/10.1093/forestry/cpq020

Zeng, W., Xiang, W., Zhou, B., Ouyang, S., Zeng, Y., Chen, L., Zhao, L., Valverde-Barrantes, O.J., 2020. Effects of tree species richness on fine root production varied with stand density and soil nutrients in subtropical forests. Science of the Total Environment, 733, pp. 139344. https://doi.org/10.1016/j.scitotenv.2020.139344

Zheng, T., Xie, H., Thompson, G.L., Bao, X., Deng, F., Yan, E., Zhou, X., Liang, C., 2021. Shifts in microbial metabolic pathway for soil carbon accumulation along subtropical forest succession. Soil Biology and Biochemistry, 160, pp. 108335. https://doi.org/10.1016/j.soilbio.2021.108335

Zhou, L., Hong, Y., Li, C., Lu, C., He, Y., Shao, J., Sun, X., Wang, C., Liu, R., Liu, H., 2020. Responses of biomass allocation to multi-factor global change: A global synthesis. Agriculture Ecosystems Environment, 304, pp. 107115. https://doi.org/10.1016/j.agee.2020.107115




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.54667

DOI: http://dx.doi.org/10.56369/tsaes.5466



Copyright (c) 2024 Deb Raj Aryal, Danilo Enrique Morales Ruiz, Daniel Molina Alvarado, José Apolonio Venegas Venegas, Fernando Casanova Lugo, Gilberto Villanueva Lopez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.