INTERCROPPING OF LEAFY VEGETABLES AND Cnidoscolus aconitifolius WITH DIFFERENT CANOPY SIZES IN TROPICAL CLIMATES

Fitra Gustiar, Benyamin Lakitan, Dedik Budianta, Zaidan Panji Negara, Rofiqoh Purnama Ria, Strayker Ali Muda

Abstract


Background. Chaya (Cnidoscolus aconitifolius ) is a perennial leafy vegetable that is widely known for its year-round harvest potential. Several studies have also shown that it has distinct canopy and root morphology, making chaya an ideal candidate for intercropping with short-duration leafy vegetables for enhancing crop diversity and intensifying production. Objective. To examine the growth of short-duration leafy vegetables in an intercropping pattern with chaya using different canopy sizes. Methodology. The experimental design was a split-plot design with 2 main factors (planting patterns), 3 sub-plots (leafy vegetable crops), and 3 replications. Planting patterns monoculture (conventional) and intercropping with chaya having 80 cm (DC 80) or 120 cm (DC 120) canopy diameters. Leafy vegetables were water spinach, mustard greens, and lettuce. Results. Chaya canopy restricted sunlight intensity, leading to temperature changes in the cultivation area. This situation was proven by observing that cultivated land under chaya canopy (DC 80 and DC 120) had a lower air temperature than without chaya canopy (monoculture).  Short-duration leafy vegetables grown through intercropping showed suboptimal growth under intercropping because of limited sunlight availability, causing lower yields compared to monoculture systems. Chaya canopy with a diameter of 120 cm reduced the leaf number and the fresh weight of intercropped leafy vegetables. Conclusion. Even though intercropping reduced leafy vegetable plant growth, intercropping is a viable option for using vacant spaces in chaya cultivation. Optimal growth could be achieved by pruning chaya leaves, allowing sunlight to reach the intercropped plants, when chaya diameter canopy is ≤ 80 cm.

Keywords


Chaya; leafy vegetable; monoculture; olericulture; polyculture

Full Text:

PDF

References


Dalengkade, M.N., 2019. Modeling Air Temperature Reaction on Sunlight Lighting in Mangrove Forests. Jurnal Ilmu Matematika dan Terapan 13(2), pp. 061–068. https://doi.org/10.30598/barekengvol13iss2pp061-068ar732

Daniel, K.A., Muindi, E.M., Gogo, E.O. and Muti, S., 2022. Performance of Brassica rapa and Brassica oleracea under shade net within coastal environment. Journal of Agriculture and Ecology Research International, 23(3), pp. 45–59. https://doi.org/10.9734/jaeri/2022/v23i330223

Dunbabin, V.M., Diggle, A.J., Rengel, Z. and Robert van, H., 2002. Modeling the interactions between water and nutrient uptake and root growth. Plant and Soil, 239, pp. 19–38. https://doi.org/10.1023/A:1014939512104

Ebel, R., de Jesús Méndez Aguilar, M., Castillo Cocom, J.A. and Kissmann, S., 2019. Genetic Diversity in Nutritious Leafy Green Vegetable—Chaya (Cnidoscolus aconitifolius). Genetic Diversity in Horticultural Plants, 22, pp. 161-189. https://doi.org/10.1007/978-3-319-96454-6_6

Fadilah, L.N., Lakitan, B. and Marlina, M., 2022. Effects of shading on the growth of the purple pakchoy (Brassica rapa var. Chinensis) in the urban ecosystem. Agronomy Research, 20, pp. 938–950. https://doi.org/10.15159/AR.22.057

Gustiar, F., Lakitan, B., Budianta, D., and Negara, Z.P., 2023a. Non-destructive model for estimating leaf area and growth of Cnidoscolus aconitifolius cultivated using different stem diameter of the semi hardwood cuttings. Agrivita, 45(2), pp. 188–198. https://doi.org/10.17503/agrivita.v45i2.3849

Gustiar, F., Lakitan, B., Budianta, D. and Negara, Z.P., 2023b. Assessing the impact on growth and yield in different varieties of chili pepper (Capsicum frutescens) intercropped with chaya (Cnidoscolus aconitifolius). Biodiversitas Journal of Biological Diversity, 24(5), pp. 2639-2646. https://doi.org/10.13057/biodiv/d240516

Jayalath, T.C. and van lersel, M.W., 2021. Canopy size and light use efficiency explain growth differences between lettuce and mizuna in vertical farms. Plants2021, 10(4), pp. 704. https://doi.org/10.3390/plants10040704

Kong, Y., Masabni, J. and Niu, G., 2023. Temperature and light spectrum differently affect growth, morphology, and leaf mineral content of two indoor-grown leafy vegetables. Horticulturae, 9(3), pp. 331. https://doi.org/10.3390/horticulturae9030331

Leroy, A., Bhatia, B., Kelsall, C.C., Castillejo-Cuberos, A., Di Capua H., M., Zhao, L., Guzman, A.M. and Wang, E.N., 2019. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Science Advances, 5(10), pp. 1–9. https://doi.org/10.1126/sciadv.aat9480

Lyu, X., Cheng, Q., Qin, C., Li, Y., Xu, X., Ji, R., Mu, R., Li, H., Zhao, T., Liu, J., Zhou, J., Li, H., Yang, G., Chen, Q. and Liu, B., 2021. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Molecular Plant, 14(2), pp. 298–314. https://doi.org/10.1016/j.molp.2020.11.016

Mai, T.H., Schnepf, A., Vereecken, H. and Vanderborght, J., 2019. Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients. Plant and Soil, 439(1–2), pp. 273–292. http://doi.org/10.1007/S11104-018-3890-4

Maitra, S., Hossain, A., Brestic, Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, J. B., Jena, J., Bhattacharya, U., Duvvada, S. K., Lalichetti, S. and Sairam, M.M., 2021. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy, 11(2), pp. 343. https://doi.org/10.3390/agronomy11020343

Maitra, S., Palai, J.B., Pilli, M. and Kumar, P.D., 2019. Potential of intercropping system in sustaining crop productivity. International Journal of Agriculture Environment and Biotechnology, 12(01). https://doi.org/10.30954/0974-1712.03.2019.7

Niinemets, Ü., 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), pp. 693–714. https://doi.org/10.1007/s11284-010-0712-4

Nyawade, S.O., Karanja, N.N., Gachene, C.K.K., Gitari, H.I., Schulte-Geldermann, E. and Parker, M.L., 2019. Intercropping optimizes soil temperature and increases crop water productivity and radiation use efficiency of rainfed potato. American Journal of Potato Research, 96(5), pp. 457–471. https://doi.org/10.1007/s12230-019-09737-4

Salisbury, F. and Ross C., 1995. Plant physiology. In 4thed. Wadsworth Publishing Co,Belmont.

Shehata, S., Elsagheer, A.A., El-Helaly, M.A., Saleh, S.A. and Abdallah, A.M., 2013. Shading effect on vegetative and fruit characters of tomato plant. Journal of Applied Sciences Research, 9(3) pp. 1434–1437.

Simi, S.M., Elizabeth, M.A., Ik, P., Babu, L., Jose, J. and Prasad S., 2023. Review on Cnidoscolus Aconitifolius (Chayamansa)- A Traditional Medicinal Plant. World Journal of Pharmaceutical Research, 12(13), pp. 676–690. https://doi.org/10.20959/wjpr202313-29186

Sugiyatno, A., Yenni, N. and Al Fanshuri, B., 2020. Effect of pruning canopy on productivity and fruit quality of Mandarin cv Pulung. Jurnal Hortikultura, 29(2), pp. 199. https://doi.org/10.21082/jhort.v29n2.2019.p199-208

Sulistiani, L.S., Negara, Z.P., Adriansyah, F., Gustiar, F., Halimi, E.S., Sodikin, E. and Muda, S.A., 2023. The effects of shading and organic domestic waste on brazilian spinach growth. Journal of Suboptimal Lands, 12(1), pp. 52–61. https://doi/org/10.36706/JLSO.12.1.2023.623

Sulistyowati, D., Chozin, M.A., Syukur, M., Melati, M. and Guntoro, D., 2019. Respon karakter morfo-fisiologi genotipe tomat senang naungan pada intensitas cahaya rendah. Jurnal Hortikultura, 29(1), pp. 23–32.

Tan, M., Gou, F., Stomph, T.J., Wang, J., Yin, W., Zhang, L., Chai, Q., and van der Werf, W., 2020. Dynamic process-based modelling of crop growth and competitive water extraction in relay strip intercropping: Model development and application to wheat-maize intercropping. Field Crops Research, pp. 246. https://doi.org/10.1016/j.fcr.2019.107613

van Oort, P.A.J., Gou, F., Stomph, T.J. and van der Werf, W., 2020. Effects of strip width on yields in relay-strip intercropping: A simulation study. European Journal of Agronomy, 112: 125936. https://doi.org/10.1016/j.eja.2019.125936

Verma, A., Aravindakshan, K., Sharma, K.S.R., Gupta, A.K., Rahul, C. and Maurya, I.B., 2021. Study on intercropping of fenugreek (Trigonellafoenum graecum L.) with different short duration vegetable crops. International Journal of Current Microbiology and Applied Sciences, 10(5), pp. 95–100. https://doi.org/10.20546/ijcmas.2021.1005.014

Waman, A.A., Smitha, G.R. and Bohra, P., 2019. A review on clonal propagation of medicinal and aromatic plants through stem cuttings for promoting their cultivation and conservation. Current Agriculture Research Journal, 7(2), pp. 122–138. https://doi.org/10.12944/carj.7.2.01

Wang, R., Sun, Z., Bai, W., Wang, E., Wang, Q. and Zhang, D., 2021. Canopy heterogeneity with border-row proportion affects light interception and use efficiency in maize/peanut strip intercropping. Field Crops Research, pp. 271. https://doi.org/10.1016/j.fcr.2021.108239

Wheatley, R.M., Ford, B.L., Li, L., Aroney, S.T.N., Knights, H.E., Ledermann, R., East, A.K., Ramachandran, V.K. and Poole, P.S., 2020. Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 117(38), pp. 23823–23834. https://doi.org/10.1073/pnas.2009094117

Wijayantom N. and Nurunnajah, N., 2012. Light Intensity, Temperature, Humidity and Rooting System of Mahogany (Swietenia macrophylla King.) in RPH Babakan Madang, BKPH Bogor, KPH Bogor. Jurnal Silvikultur Tropika ,3(1), 8–13. https://doi.org/10.29244/j-siltrop.3.1.%25p

Wulandari, N., Irfan, M. and Saragih, R., 2020. Isolasi dan karakterisasi plant growth promoting rhizobacteria dari rizosfer kebun karet rakyat. Dinamika Pertanian, 35(3), pp. 57–64. https://doi.org/10.25299/dp.2019.vol35(3).4565

Yasoda, P.G.C., Pradheeban, L., Nishanthan, K. and Sivachandiran, S., 2018. Effect of different shade levels on growth and yield performances of Cauliflower. International Journal of Environment, Agriculture and Biotechnology, 3(3): 948–955. https://doi.org/10.22161/ijeab/3.3.30

Yun, T., Cao, L., An, F., Chen, B., Xue, L., Li, W., Pincebourde, S., Smith, M.J. and Eichhorn, M.P., 2019. Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns. Elsevier, 10, pp. 107610. https://doi.org/10.1016/j.agrformet.2019.06.009

Yuniati, N., Hamdani, J.S., and Soleh, M.A., 2020. Physiological responses of potato plant to the types of plant growthregulator under various drought stress condition in medium altitude. Kultivasi, 19(1), pp. 1053. http://doi.org/10.24198/kultivasi.v19i1.24972

Yustiningsih, M., 2019. ntensitas cahaya dan efisiensi fotosintesis pada tanaman naungan dan tanaman terpapar cahaya langsung Bio-Edu: Jurnal Pendidikan Biologi, 4(2), pp. 44–49. https://doi.org/10.32938/jbe.v4i2.38




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v28i1.54522

DOI: http://dx.doi.org/10.56369/tsaes.5452



Copyright (c) 2025 Fitra Gustiar, Benyamin Lakitan, budianta dedik, Zaidan Panji Negara, Ria Rofiqoh Purnama

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.