SOIL MICRONUTRIENT CONTENT ANALYSIS AND MAPPING OF AGRICULTURAL SALT-AFFECTED SOILS AROUND ABAYA AND CHAMO LAKES, SOUTH ETHIOPIA RIFT VALLEY

Azmera Walche, Wassie Haile, Alemayehu Kiflu, Dereje Tsegaye

Abstract


Background. Salt-affected soils cause a significant portion of land to become unproductive yearly; its impact is severe in sub-Saharan African nations, especially the arid and semiarid lowlands, and the Rift Valley regions of Ethiopia are typically host to naturally salt-affected areas. Objective. To analyze the micronutrient content and map the micronutrient fertility status of agricultural salt-affected soils around Abaya and Chamo Lakes South Ethiopia Rift Valley. Methodology. A systematic sampling technique was employed to obtain 300 soil samples for the investigation from two depths (0-20 and 20-40cm), with a 600m sampling interval, of which 30 were used. The research data was analyzed using the application of standardized analytical procedures for soil data and descriptive and geostatistical techniques. Results. According to the study, there is low zinc available in the soil but an ample amount of iron, manganese, and copper. In addition, the study's findings revealed that, whereas the remaining micronutrient regional variability is found at long distances, available iron exhibited a regional variation in soil quality at small distances. Implications. The study suggests applying organic matter for better soil structure, water retention, and nutrient availability.Moreover, the results recommend that soils affected by salt might recover using various materials. Conclusions. In the study areas, zinc fertilizer may still be needed for an optimal yield even though the research area has low amounts of zinc fertilizer. The study concluded with management recommendations to minimize the adverse effects of very high micronutrient content on human health and plant growth.

Keywords


Kriging; nutrient variability; salt-affected soils; soil micronutrient; special dependency.

Full Text:

PDF

References


Abdi, D. and Gebrekristos, S., 2022. Regionalization of Low Flow Analysis in Data Scarce Region: The Case of the Lake Abaya-Chamo Sub-basin, Rift Valley Lakes Basin, Ethiopia. Journal of Water Management Modeling. https://doi.org/10.14796/JWMM.C487

Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A. and Martínez-Martínez, S., 2011. Salinity increases mobility of heavy metals in soils. Chemosphere, 85(8), pp. 1318–1324. https://doi.org/10.1016/j.chemosphere.2011.07.046

Addis, H. K., Klik, A. and Strohmeier, S., 2015. Spatial variability of selected soil attributes under agricultural land use system in a mountainous watershed, Ethiopia. International Journal of Geosciences, 6(06), pp. 605-613. https://doi.org/10.4236/ijg.2015.66047

Addise, T., Bedadi, B., Regassa, A., Wogi, L. and Feyissa, S., 2022. Spatial variability of soil organic carbon stock in Gurje Subwatershed, Hadiya Zone, Southern Ethiopia. Applied and Environmental Soil Science, 2022. pp. 1-12. https://doi.org/10.1155/2022/5274482

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R. and Wang, M.-Q., 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42. https://doi.org/10.3390/toxics9030042

Ali, A., Bhat, B. A., Rather, G. A., Malla, B. A. and Ganie, S. A., 2020. Proteomic studies of micronutrient deficiency and toxicity. In: Aftab, T., Hakeem, K.R. (eds). Plant Micronutrients. Springer, Cham. https://doi.org/10.1007/978-3-030-49856-6_11

Alloway, B. J., 2013. Heavy metals and metalloids as micronutrients for plants and animals. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. Environmental Pollution. Springer Dordrecht. 22, pp. 195–209. https://doi.org/10.1007/978-94-007-4470-7

Andrunik, M., Wo?owiec, M., Wojnarski, D., Zelek-Pogudz, S. and Bajda, T., 2020. Transformation of Pb, Cd, and Zn minerals using phosphates. Minerals, 10(4), 342. https://doi:10.3390/min10040342

Arétouyap, Z., Njandjock Nouck, P., Nouayou, R., Ghomsi Kemgang, F. E., Piépi Toko, A. D. and Asfahani, J., 2016. Lessening the adverse effect of the semivariogram model selection on an interpolative survey using kriging technique. SpringerPlus, 5(1), pp. 1–11. https://doi:10.1186/s40064-016-2142-4.

Barman, A., Sheoran, P., Yadav, R. K., Abhishek, R., Sharma, R., Prajapat, K., Singh, R. K. and Kumar, S., 2021. Soil spatial variability characterization: Delineating index-based management zones in salt-affected agroecosystem of India. Journal of Environmental Management, 296, 113243. https://doi.org/10.1016/j.jenvman.2021.113243

Baruah, R., 2018. Towards the Bioavailability of Zinc in Agricultural Soils. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8_4.

Basak, N. et al. (2022). Salt Affected Soils: Global Perspectives. In: Shit, P.K., Adhikary, P.P., Bhunia, G.S., Sengupta, D. (eds) Soil Health and Environmental Sustainability. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-09270-1_6.

Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R. and Hijmans, R. J., 2017. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PloS One, 12(4), e0175554. https://doi.org/10.1371/journal.pone.0175554.

Bedadi, B., Beyene, S., Erkossa, T. and Fekadu, E., 2023. Soil Management. In The Soils of Ethiopia. Springer Cham. pp. 193–234). https://doi.org/10.1007/978-3-031-17012-6

Bhatla, S. C., A. Lal, M., Kathpalia, R. and Bhatla, S. C., 2018. In book: Plant mineral nutrition. Plant Physiology, Development and Metabolism . Springer Nature Singapore Pte Ltd. 2018. pp. 37–81.+ https://doi.org/10.1007/978-981-13-2023-1_1

Bindraban, P. S., Dimkpa, C. O. and Pandey, R., 2020. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56(3), pp. 299–317. https://doi.org/10.1007/s00374-019-01430-2.

Bisht, N. and Chauhan, P. S., 2020. Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. Soil Contamination-Threats and Sustainable Solutions, pp. 1–10. https://doi.org/10.5772/intechopen.94593

Blanca Mena, M. J., Alarcón Postigo, R., Arnau Gras, J., Bono Cabré, R. and Bendayan, R., 2017. Non-normal data: Is ANOVA still a valid option? Psicothema, 2017, Vol. 29, Num. 4, pp. 552-557. https://doi.org/10.7334/psicothe -ma2016.383

Borena, F. R. and Hassen, J. M., 2022. Impacts of Soil Salinity on Irrigation Potential: In the Case of Middle Awash, Ethiopian Review. Open Access Library Journal, 9(4), pp. 1–18. https://doi.org/10.4236/oalib.1108123

Brevik, E. C., Calzolari, C., Miller, B. A., Pereira, P., Kabala, C., Baumgarten, A. and Jordán, A., 2016. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma, 264, pp. 256–274. https://doi:10.1016/J.GEODERMA.2015.05.017

Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F. and Konopka, A. E., 1994. Field?scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), pp. 1501–1511. https://doi.org/10.2136/SSSAJ1994.03615995005800050033X

Challa, A., Kitila, K. and Workina, M., 2022. Evaluation of Gypsum and Leaching Application on Salinity Reclamation and Crop Yield at Dugada District, East Shoa Zone of Oromia. International Journal of Environmental Chemistry, 6(1), pp. 1-6. https://doi.org/10.11648/j.ijec.20220601.11

Chhabra, R. and Chhabra, R., 2021a. Nature and origin of salts, classification, area and distribution of salt-affected soils. Salt-Affected Soils and Marginal Waters: Global Perspectives and Sustainable Management, pp. 1–47. https://doi:10.1007/978-3-030-78435-5_1.

Chhabra, R. and Chhabra, R., 2021b. Nutrient Management in Salt-affected Soils. Salt-Affected Soils and Marginal Waters: Global Perspectives and Sustainable Management, pp. 349–429. https://doi.org/10.1007/978-3-030-78435-5-8.

Choukr-Allah, R., Mouridi, Z. El, Benbessis, Y. and Shahid, S. A., 2023. Salt-Affected Soils and Their Management in the Middle East and North Africa (MENA) Region: A Holistic Approach. In: Choukr-Allah, R., Ragab, R. (eds) Biosaline Agriculture as a Climate Change Adaptation for Food Security. Springer, Cham. https://doi.org/10.1007/978-3-031-24279-3_2.

Chrysargyris, A., Höfte, M., Tzortzakis, N., Petropoulos, S. A. and Di Gioia, F., 2022. Micronutrients: The borderline between their beneficial role and toxicity in plants. Frontiers in Plant Science, 13, 840624. https://doi.org/10.3389/fpls.2022.840624

Corwin, D. L. and Yemoto, K., 2020. Salinity: Electrical conductivity and total dissolved solids. Soil Science Society of America Journal, 84(5), pp. 1442–1461. https://doi.org/10.1002/saj2.20154

da Silva, J. G., 2019. Food systems and nutrition in the context of climate change. In book: Water and Sanitation?Related Diseases and the Changing Environment: Challenges, Interventions, and Preventive Measures, pp. 111–126. https://doi.org/10.1002/9781119415961.ch9

Dhaliwal, S. S., Sharma, V., Shukla, A. K., Verma, V., Kaur, M., Alsuhaibani, A. M., Gaber, A., Singh, P., Laing, A. M. and Hossain, A., 2023. Minerals and chelated-based manganese fertilization influences the productivity, uptake, and mobilization of manganese in wheat (Triticum aestivum L.) in sandy loam soils. Frontiers in Plant Science, 14, 1163528. https://doi.org/10.3389/fpls.2023.1163528

Dimkpa, C., Adzawla, W., Pandey, R., Atakora, W. K., Kouame, A. K., Jemo, M. and Bindraban, P. S., 2023. Fertilizers for food and nutrition security in sub-Saharan Africa: an overview of soil health implications. Frontiers in Soil Science, 3, 1123931. https://doi.org/10.3389/fsoil.2023.1123931

El-Ramady, H., Faizy, S., Amer, M. M., Elsakhawy, T. A., Omara, A. E.-D., Eid, Y. and Brevik, E., 2022. Management of Salt-Affected Soils: A Photographic Mini-Review. Environment, Biodiversity and Soil Security, 6(2022), pp. 61–79. https://doi.org/10.21608/JENVBS.2022.131286.1172

Ferreira, V., Panagopoulos, T., Andrade, R., Guerrero, C. and Loures, L., 2015. Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed. Solid Earth, 6(2), pp. 383–392. https://doi.org/10.5194/sed-7-301-2015

Gülser, C., Ekberli, I., and Candemir, F., 2016. Spatial variability of soil physical properties in a cultivated field. Eurasian Journal of Soil Science, 5(3), pp. 192–200. https://dx.doi.org/10.18393/ejss.2016.3.192-200.

Habtamu, A. and Wassie, H., 2022. Review on Causes and Management Strategies of Salt Affected Soils in Lowlands of Ethiopia. Archives of Crop Science, 5(2), pp. 1–7. https://doi.org/10.36959/718/615.

Hailu, B. and Mehari, H., 2021. Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: a review. Journal of Natural Sciences Research 12(3): pp.1-10. https://doi.org/10.7176/jnsr%2F12-3-01

Hewitt, A. E., Balks, M. R., Lowe, D. J., Hewitt, A. E., Balks, M. R. and Lowe, D. J., 2021. Gley Soils. The Soils of Aotearoa New Zealand, pp. 73–85. https://doi.org/10.1007/978-3-030-64763-6.

Hough, R. L. (2010). Copper and lead. In Peter S. Hooda, ed. Trace Elements in Soils. Copyright © 2010 Blackwell Publishing Ltd. pp. 441–460. https://doi.org/10.1002/9781444319477.ch18

Hua, Z. F., Chen, J., Erwin, D. H., Syverson, D. D., Ni, P., Rampino, M., Chi, Z., Cai, Y. and Xiang, L., 2021. Felsic volcanism as a factor driving the end-Permian mass extinction. Science Advances, 7(47), eabh1390. https://doi.org/10.1126/sciadv.abh1390.

Huan, Z., Wu, J., Gao, L., Yu, J., Yuan, X., Zhu, W., Wang, X. and Cui, Z., 2018. Aerobic deterioration of corn stalk silage and its effect on methane production and microbial community dynamics in anaerobic digestion. Bioresource Technology, 250, pp. 828–837. https://doi.org/10.1016/j.biortech.2017.09.149

Izydorczyk, G., Mikula, K., Skrzypczak, D., Moustakas, K., Witek-Krowiak, A. and Chojnacka, K., 2021. Potential environmental pollution from copper metallurgy and methods of management. Environmental Research, 197, 111050. https://doi.org/10.1016/j.envres.2021.111050.

Jennings, K., 2007. Effect of varying degrees of water saturation on redox conditions in a yellow brown apedal B soil horizon. University of the Free State. Corpus ID: 99614599. https://www.semanticscholar.org/paper/Effect-of-varying-degrees-of-water-saturation-on-in-Jennings

Kayranli, B., 2021. Zinc Removal with Lignocellulosic Adsorbents; Interaction Mechanisms, from Biosorbent to Soil Conditioner. https://doi.org/10.21203/rs.3.rs-400539/v1

Kebede, F., 2023. Status, Drivers, and Suggested Management Scenarios of Salt-Affected Soils in Africa. In: Choukr-Allah, R., Ragab, R. (eds) Biosaline Agriculture as a Climate Change Adaptation for Food Security. Springer, Cham. https://doi.org/10.1007/978-3-031-24279-3_13.

Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kölbl, A. and Schloter, M., 2010. Biogeochemistry of paddy soils. Geoderma, 157(1–2), pp. 1–14. https://doi.org/10.1016/j.geoderma.2010.03.009

Kome, G. K., Enang, R. K., Tabi, F. O. and Yerima, B. P. K., 2019. Influence of clay minerals on some soil fertility attributes: a review. Open Journal of Soil Science, 9(9), pp. 155–188. https://doi.org/10.4236/ojss.2019.99010

Kwakye, S. and Kadyampakeni, D. M., 2022. Micronutrients Improve Growth and Development of HLB-Affected Citrus Trees in Florida. Plants, 12(1), 73. https://doi.org/10.3390/plants12010073

Laurent, C., Bravin, M. N., Crouzet, O., Pelosi, C., Tillard, E., Lecomte, P. and Lamy, I., 2020. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Science of the Total Environment, 709, 135927. https://doi.org/10.1016/j.scitotenv .2019.135927

Lindsay, W. L. and Norvell, Wa., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), pp. 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M. and García-Torres, L., 2002. Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246, pp. 97–105. https://doi.org/10.1023/A:1021568415380

Maguffin, S. C., Abu-Ali, L., Tappero, R. V, Pena, J., Rohila, J. S., McClung, A. M. and Reid, M. C., 2020. Influence of manganese abundances on iron and arsenic solubility in rice paddy soils. Geochimica et Cosmochimica Acta, 276, pp. 50–69. https://doi.org/10.1016/j.gca.2020.02.012

Mantovi, P., Bonazzi, G., Maestri, E., and Marmiroli, N., 2003. Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant and Soil, 250, pp. 249–257. https://doi.org/10.1023/A:1022848131043

Martínez-Cortijo, J. and Ruiz-Canales, A., 2018. Effect of heavy metals on rice irrigated fields with waste water in high pH Mediterranean soils: The particular case of the Valencia area in Spain. Agricultural Water Management, 210, pp. 108–123. https://doi.org/10.1016/j.agwat.2018.07.037

Mengistu, H. A., Demlie, M. B. and Abiye, T. A., 2019. Groundwater resource potential and status of groundwater resource development in Ethiopia. Hydrogeology Journal. 27, pp. 1051–1065. https://doi.org/10.1007/s10040-019-01928-x

Mustafa, A., Athar, F., Khan, I., Chattha, M. U., Nawaz, M., Shah, A. N., Mahmood, A., Batool, M., Aslam, M. T. and Jaremko, M., 2022. Improving crop productivity and nitrogen use efficiency using sulfur and zinc-coated urea: A review. Frontiers in Plant Science, 13, 942384. https://doi.org/10.3389/fpls.2022.942384

Neal, O. S. and Zheng, W., 2015. Manganese toxicity upon overexposure: a decade in review. Current Environmental Health Reports, 2, pp. 315–328. https://doi.org/10.1007/s40572-015-0056-x

Nivethadevi, P., Swaminathan, C. and Kannan, P., 2021. Chapter-4 Soil Organic Matter Decomposition-Roles, Factors and Mechanisms. In Sukul SP, ed.: Latest Trends in Soil Sciences volume 1Publisher: Integrated Publications, New Delhi, 133, 61. https://doi.org/10.22271/int.book.33

Ohanenye, I. C., Emenike, C. U., Mensi, A., Medina-Godoy, S., Jin, J., Ahmed, T., Sun, X. and Udenigwe, C. C., 2021. Food fortification technologies: Influence on iron, zinc and vitamin A bioavailability and potential implications on micronutrient deficiency in sub-Saharan Africa. Scientific African, 11, e00667. https://doi.org/10.1016/j.sciaf.2020.e00667.

Panagos, P., Ballabio, C., Lugato, E., Jones, A., Borrelli, P., Scarpa, S., Orgiazzi, A. and Montanarella, L., 2018. Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability, 10(7), 2380. https://doi.org/10.3390/su10072380

Pasala, R., Kulasekaran, R., Pandey, B. B., Manikanta, C., Gopika, K., Daniel, P. S. J., Elthury, S. and Yadav, P., 2022. Recent advances in micronutrient foliar spray for enhancing crop productivity and managing abiotic stress tolerance. Plant Nutrition and Food Security in the Era of Climate Change, pp. 377–398. https://doi.org/10.1016/B978-0-12-822916-3.00008-1

Pr?v?lie, R., 2021. Exploring the multiple land degradation pathways across the planet. Earth-Science Reviews, 220, 103689. https://doi.org/10.1016/j.earscirev.2021.103689

Pulido-Bosch, A., Rigol-Sanchez, J. P., Vallejos, A., Andreu, J. M., Ceron, J. C., Molina-Sanchez, L. and Sola, F., 2018. Impacts of agricultural irrigation on groundwater salinity. Environmental Earth Sciences, 77, pp. 1–14 https://doi.org/10.1007/s12665-018-7386-6

Raji?i?, V., Popovi?, V., Periši?, V., Biberdži?, M., Jovovi?, Z., Gudži?, N., Mihailovi?, V., ?oli?, V., ?uri?, N. and Terzi?, D., 2020. Impact of nitrogen and phosphorus on grain yield in winter triticale grown on degraded vertisol. Agronomy, 10(6), 757. https://doi.org/10.3390/agronomy10060757

Regassa, A., Kibret, K., Selassie, Y. G., Kiflu, A. and Tena, W., 2023. Soil Properties. In Beyene S., Regassa A., Mishra BB. and Haile M, eds. The Soils of Ethiopia. pp. 111–156. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-17012-6

Rehman, A. U., Masood, S., Khan, N. U., Abbasi, M. E., Hussain, Z. and Ali, , 2021. Molecular basis of Iron Biofortification in crop plants; A step towards sustainability. Plant Breeding, 140(1), pp. 12–22. https://doi.org/10.1111/pbr.12886

Rengel, Z., 2023. Plant responses to soil-borne ion toxicities. In Marschner’s Mineral Nutrition of Plants pp. 665–722. Elsevier. https://doi.org/10.1016/B978-0-12-819773-8.00001-0

Rout, G. R. and Sahoo, S., 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, pp. 1–24. https://doi.org/10.7831/ras.3.1

Saleh, A. M., 2018. Spatial variability mapping of some soil properties in Jadwal Al_Amir Project/Babylon/Iraq. Journal of the Indian Society of Remote Sensing, 46(9), pp. 1481–1495. https://doi.org/10.1007/s12524-018-0795-x

Sani, S., Abdulkadir, A., hmad Pantami, S. A., Sani, M., Amin, A. M. and Abdullahi, M. Y., 2023. Spatial Variability and Mapping of Selected Soil Physical Properties under Continuous Cultivation. Turkish Journal of Agriculture-Food Science and Technology, 11(4), pp. 719–729. https://doi.org/10.24925/turjaf.v11i4.719-729.5733

Shahrajabian, M. H., Sun, W. and Cheng, Q., 2022. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), pp. 1–10. https://doi.org/10.1186/s43088-022-00210-6

Shanshan, L., Chen, S., Wang, M., Lei, X., Zheng, H., Sun, X., Wang, L. and Han, Y., 2021. Redistribution of iron oxides in aggregates induced by pe+ pH variation alters Cd availability in paddy soils. Science of the Total Environment, 752, 142164. https://doi.org/10.1016/j.scitotenv.2020.142164

Sharma, D. K. and Singh, A., 2017. Current trends and emerging challenges in sustainable management of salt-affected soils: a critical appraisal. Bioremediation of Salt Affected Soils: An Indian Perspective, pp. 1–40. https://doi.org/10.1007/978-3-319-48257-6_1

Shukla, A. K., Behera, S. K., Pakhre, A. and Chaudhari, S. K., 2018. Micronutrients in soils, plants, animals and humans. Indian Journal of Fertilisers, 14(3), pp. 30–54. https://www.researchgate.net/publication/324497356

Steffan, J. J., Brevik, E. C., Burgess, L. C. and Cerdà, A., 2018. The effect of soil on human health: an overview. European Journal of Soil Science, 69(1), pp. 159–171. https://doi.org/10.1111/ejss.12451

Steger, F., Rachbauer, L., Windhagauer, M., Montgomery, L. F. R. and Bochmann, G., 2017. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii. Anaerobe, 46, pp. 96–103. https://doi.org/10.1016/j.anaerobe.2017.06.010

Stritih, A., 2021. Risk-based assessments of ecosystem services: Addressing uncertainty in mountain forest management. ETH Zurich. Thesis for: Doctor of Sciences. Diss. ETH NO. 27728 ETH Zürich, Planning of Landscape and Urban Systems. https://doi.org/10.3929/ethz-b-000493088

Suganya, A., Saravanan, A. and Manivannan, N., 2020. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Commun. Soil Science. Plant Analysis, 51(15), 2001–2021. https://doi.org/10.1080/00103624.2020.1820030

Swafo, S. M. and Dlamini, P. E., 2023. Utilisation of Intrinsic and Extrinsic Soil Information to Derive Soil Nutrient Management Zones for Banana Production in a Smallholder Farm. Land, 12(9), 1651. https://doi.org/10.3390/land12091651

Tessema, N., Yadeta, D., Kebede, A. and Ayele, G. T., 2023. Soil and Irrigation Water Salinity, and Its Consequences for Agriculture in Ethiopia: A Systematic Review. Agriculture (Switzerland), 13(1). https://doi.org/10.3390/agriculture13010109

Thampatti, K. C. M., 2022. Problem Soils: Constraints and Management (1st ed.). CRC Press. https://doi.org/10.1201/9781003347354

Tiruneh, T. A. (2005). Water quality monitoring in Lake Abaya and Lake Chamo region : a research based on water resources of the Abaya-Chamo Basin - South Ethiopia [Fachbereich 8, Chemie - Biologie]. https://nbn-resolving.org/urn:nbn:de:hbz:467-1040

Tóth, G., Hermann, T., Da Silva, M. R. and Montanarella, L., 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, pp. 299–309. https://doi.org/10.1016/j.envint.2015.12.017

Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., and Dubey, N. K., 2015. Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum, 37, pp. 1–14. https://doi.org/10.1007/s11738-015-1870-3

Van der Ent, A. and Reeves, R. D., 2015. Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant and Soil, 389, pp. 401–418. https://doi.org/10.1007/s11104-015-2385-9

Vinod, K., Pandita, S., Sidhu, G. P. S., Sharma, A., Khanna, K., Kaur, P., Bali, A. S. and Setia, R., 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere, 262, 127810. https://doi.org/10.1016/j.chemosphere.2020.127810

Walche, A., Haile, W., Kiflu, A. and Tsegaye, D., 2023. Assessment and Characterization of Agricultural Salt-Affected Soils around Abaya and Chamo Lakes, South Ethiopia Rift Valley. Applied and Environmental Soil Science, 2023, pp. 1–18. https://doi.org/10.1155/2023/3946508

Wang, K., 2022. Reduction of Se (?), Se (?) and Re (?) by Fe reactive phases present in CEMs and COx. Université Grenoble Alpes .Thesis [2020-....]. https://www.researchgate.net/publication/364383235

White, P. J. and Broadley, M. R., 2009. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), pp. 49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x

Willy, D. K., Muyanga, M., Mbuvi, J. and Jayne, T., 2019. The effect of land use change on soil fertility parameters in densely populated areas of Kenya. Geoderma, 343, pp. 254–262. https://doi.org/10.1016/j.geoderma.2019.02.033

Wogi, L., Dechassa, N., Haileselassie, B., Mekuria, F., Abebe, A. and Tamene, L., 2021. A guide to standardized methods of analysis for soil , water , plant , and fertilizer resources for data documentation and knowledge sharing in Ethiopia. International Center for Tropical Agriculture (CIAT), 519, pp. 41. https://alliancebioversityciat.org/publications-data/guide-standardized-methods-analysis-soil-water-plant-and-fertilizer-resources.

Worku, A., Bedadi, B. and Mohammed, M., 2015. Assessment and Mapping of Fertility Status of Salt Affected soils Amibara Area, Central Rift Valley of Ethiopia. MSc Thesis, School of Graduate Studies, Haramaya University, Haramaya, Ethiopia. https://www.researchgate.net/publication/330511238

Yao, X., Yu, K., Deng, Y., Liu, J. and Lai, Z., 2020. Spatial variability of soil organic carbon and total nitrogen in the hilly red soil region of Southern China. Journal of Forestry Research, 31(6), pp. 2385–2394. https://doi.org/10.1007/s11676-019-01014-8

Younas, N., Fatima, I., Ahmad, I. A. and Ayyaz, M. K., 2023. Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: A detailed review. Acta Ecologica Sinica, 43(3), pp. 419–425. https://doi.org/10.1016/j.chnaes.2022.07.008




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.54245

DOI: http://dx.doi.org/10.56369/tsaes.5424



Copyright (c) 2024 Azmera Walche Mengesha

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.